1
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection. Cell Host Microbe 2025; 33:484-497.e6. [PMID: 40168997 DOI: 10.1016/j.chom.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA. We show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. Early phage genes are expressed from the EPI vesicle, demonstrating its functionality as a prokaryotic, transcriptionally active, membrane-bound organelle. We also show that the phage nucleus is essential, with genome replication beginning after the injected DNA is transferred from the EPI vesicle to the phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Phoolwanti Rani
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Lizbeth Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, 80539 Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Benjamin A Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Arica R VanderWal
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Madelynn Y Hoffman
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER), Bhubaneshwar 752050, Orissa, India
| | - Ann Aindow
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Zaida K Rodriguez
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Chase J Morgan
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Emeric Charles
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brady F Cress
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Isbilir B, Yeates A, Alva V, Bharat TAM. Mapping the ultrastructural topology of the corynebacterial cell surface. PLoS Biol 2025; 23:e3003130. [PMID: 40233127 PMCID: PMC12021427 DOI: 10.1371/journal.pbio.3003130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/24/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Corynebacterium glutamicum is a diderm bacterium extensively used in the industrial-scale production of amino acids. Corynebacteria belong to the bacterial family Mycobacteriaceae, which is characterized by a highly unusual cell envelope with an outer membrane consisting of mycolic acids, called mycomembrane. The mycomembrane is further coated by a surface (S-)layer array in C. glutamicum, making this cell envelope highly distinctive. Despite the biotechnological significance of C. glutamicum and biomedical significance of mycomembrane-containing pathogens, ultrastructural and molecular details of its distinctive cell envelope remain poorly characterized. To address this, we investigated the cell envelope of C. glutamicum using electron cryotomography and cryomicroscopy of focused ion beam-milled single and dividing cells. Our cellular imaging allowed us to map the different components of the cell envelope onto the tomographic density. Our data reveal that C. glutamicum has a variable cell envelope, with the S-layer decorating the mycomembrane in a patchy manner. We further isolated and resolved the structure of the S-layer at 3.1 Å-resolution using single particle electron cryomicroscopy. Our structure shows that the S-layer of C. glutamicum is composed of a hexagonal array of the PS2 protein, which interacts directly with the mycomembrane via an anchoring segment containing a coiled-coil motif. Bioinformatic analyses revealed that the PS2 S-layer is sparsely yet exclusively present within the Corynebacterium genus and absent in other genera of the Mycobacteriaceae family, suggesting distinct evolutionary pathways in the development of their cell envelopes. Our structural and cellular data collectively provide a topography of the unusual C. glutamicum cell surface, features of which are shared by many pathogenic and microbiome-associated bacteria, as well as by several industrially significant bacterial species.
Collapse
Affiliation(s)
- Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anna Yeates
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
3
|
Lemos M, Augusto I, De Souza W, Miranda K. Advances, challenges, and applications of cryo-electron tomography workflows for three-dimensional cellular imaging of infectious pathogens. J Microsc 2025. [PMID: 40165665 DOI: 10.1111/jmi.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Cryo-electron tomography (cryo-ET) has become a powerful tool for visualising cellular structures at sub-nanometer resolution in their near-native state, offering unique insights into the molecular architecture of diverse biological systems, including infectious agents and their interactions with host cells. This paper reviews key methodologies and recent advancements in cryo-ET, with a particular focus on sample preparation of protozoan parasites and host cells. Topics covered include photopatterning for cell positioning on EM grids, vitrification techniques, whole-cell imaging, and cryo-FIB milling followed by cryo-ET. The manuscript also addresses how these approaches are providing valuable structural information on pathogens and pathogen-host interactions, which are critical for understanding mechanisms of pathogenesis and the development of therapeutic strategies. Additionally, we examine the principles and practical considerations of the multistep workflow, highlighting innovations such as integrated fluorescence microscopy (iFLM) within cryo-FIB SEM systems for improved target identification and lamella positioning. Challenges such as ion beam damage, sample thickness constraints, and the need for greater workflow automation are also discussed as areas for future improvement. As cryo-ET continues to evolve and deliver transformative insights into the molecular architecture of life, it inspires great hope for the development of future therapies against infectious diseases. LAY DESCRIPTION: Cryo-electron tomography (cryo-ET) is a special type of microscopy that allows researchers to look at the inside of cells in 3D, almost as if a hologram of the cell in its natural state was generated. This technique reveals molecular structures inside cells, allowing scientists to better understand how molecules and cellular components work together. To obtain such detailed images, biological samples need to be thin and frozen very quickly so that they remain undamaged and close to their natural state. One recent breakthrough involves using a tool called cryo-focused ion beam scanning electron microscopy (cryo-FIB SEM), which allows a thin slice of a frozen sample to be collected and then analysed using cryo-ET. In addition, photopatterning of support surfaces are being used to place cells in a strategic position for cryo-FIB SEM, and improved plunge freezing and high-pressure freezing methods have been developed to better preserve samples. Together, these techniques make it easier to reproducibly prepare high-quality samples for cryo-ET. These innovations allow capturing clearer and detailed images of cells, tissues, and even entire small organisms. Cryo-ET has led to important discoveries in biology, such as how proteins and other molecules interact within cells at the sub-nanometre scale. This technique holds great promise for revealing how life works at a molecular level, understanding diseases, and discovering new drugs.
Collapse
Affiliation(s)
- Moara Lemos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, CENABIO, Rio de Janeiro, RJ, Brazil
- Department of Structural Biology, Institut Pasteur, Paris, France
| | - Ingrid Augusto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, CENABIO, Rio de Janeiro, RJ, Brazil
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, CENABIO, Rio de Janeiro, RJ, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Amazonas, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, CENABIO, Rio de Janeiro, RJ, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Amazonas, Brazil
| |
Collapse
|
4
|
Zhang K, Cossio P, Rangan AV, Lucas BA, Grigorieff N. A new statistical metric for robust target detection in cryo-EM using 2D template matching. IUCRJ 2025; 12:155-176. [PMID: 39819740 PMCID: PMC11878444 DOI: 10.1107/s2052252524011771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
2D template matching (2DTM) can be used to detect molecules and their assemblies in cellular cryo-EM images with high positional and orientational accuracy. While 2DTM successfully detects spherical targets such as large ribosomal subunits, challenges remain in detecting smaller and more aspherical targets in various environments. In this work, a novel 2DTM metric, referred to as the 2DTM p-value, is developed to extend the 2DTM framework to more complex applications. The 2DTM p-value combines information from two previously used 2DTM metrics, namely the 2DTM signal-to-noise ratio (SNR) and z-score, which are derived from the cross-correlation coefficient between the target and the template. The 2DTM p-value demonstrates robust detection accuracies under various imaging and sample conditions and outperforms the 2DTM SNR and z-score alone. Specifically, the 2DTM p-value improves the detection of aspherical targets such as a modified artificial tubulin patch particle (500 kDa) and a much smaller clathrin monomer (193 kDa) in simulated data. It also accurately recovers mature 60S ribosomes in yeast lamellae samples, even under conditions of increased Gaussian noise. The new metric will enable the detection of a wider variety of targets in both purified and cellular samples through 2DTM.
Collapse
Affiliation(s)
- Kexin Zhang
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Pilar Cossio
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Aaditya V. Rangan
- Center for Computational Mathematics, Flatiron Institute, New York, USA
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUSA
| | - Bronwyn A. Lucas
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| | - Nikolaus Grigorieff
- RNA Therapeutics InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
- Howard Hughes Medical InstituteUniversity of Massachusetts Chan Medical SchoolWorcesterUSA
| |
Collapse
|
5
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. Commun Biol 2025; 8:131. [PMID: 39875527 PMCID: PMC11775198 DOI: 10.1038/s42003-025-07586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days and facilitating the discovery of a minor population of 100S-like disomes. We envision our approach to be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tyler S Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Caspy I, Wang Z, Bharat TA. Structural biology inside multicellular specimens using electron cryotomography. Q Rev Biophys 2025; 58:e6. [PMID: 39801355 PMCID: PMC7617309 DOI: 10.1017/s0033583525000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Collapse
Affiliation(s)
- Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
7
|
Kwon Y, Fulcher JM, Paša-Tolić L, Qian WJ. Spatial Proteomics towards cellular Resolution. Expert Rev Proteomics 2024:1-10. [PMID: 39710940 DOI: 10.1080/14789450.2024.2445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g. genetic mutations and epigenetic marks), multiplexed immunofluorescence, and spatial metabolomics/lipidomics have enabled high-resolution spatial profiling of gene expression, genetic variation, protein expression, and metabolites/lipids profiles in tissue. These developments contribute to a deeper understanding of the spatial organization within tissue microenvironments at the molecular level. AREAS COVERED This report provides an overview of the untargeted, bottom-up mass spectrometry (MS)-based spatial proteomics workflow. It highlights recent progress in tissue dissection, sample processing, bioinformatics, and liquid chromatography (LC)-MS technologies that are advancing spatial proteomics toward cellular resolution. EXPERT OPINION The field of untargeted MS-based spatial proteomics is rapidly evolving and holds great promise. To fully realize the potential of spatial proteomics, it is critical to advance data analysis and develop automated and intelligent tissue dissection at the cellular or subcellular level, along with high-throughput LC-MS analyses of thousands of samples. Achieving these goals will necessitate significant advancements in tissue dissection technologies, LC-MS instrumentation, and computational tools.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
8
|
Armbruster EG, Rani P, Lee J, Klusch N, Hutchings J, Hoffman LY, Buschkaemper H, Enustun E, Adler BA, Inlow K, VanderWal AR, Hoffman MY, Daksh D, Aindow A, Deep A, Rodriguez ZK, Morgan CJ, Ghassemian M, Laughlin TG, Charles E, Cress BF, Savage DF, Doudna JA, Pogliano K, Corbett KD, Villa E, Pogliano J. A transcriptionally active lipid vesicle encloses the injected Chimalliviridae genome in early infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558163. [PMID: 37781618 PMCID: PMC10541120 DOI: 10.1101/2023.09.20.558163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Many eukaryotic viruses require membrane-bound compartments for replication, but no such organelles are known to be formed by prokaryotic viruses1-3. Bacteriophages of the Chimalliviridae family sequester their genomes within a phage-generated organelle, the phage nucleus, which is enclosed by a lattice of the viral protein ChmA4-10. Previously, we observed lipid membrane-bound vesicles in cells infected by Chimalliviridae, but due to the paucity of genetics tools for these viruses it was unknown if these vesicles represented unproductive, abortive infections or a bona fide stage in the phage life cycle. Using the recently-developed dRfxCas13d-based knockdown system CRISPRi-ART11 in combination with fluorescence microscopy and cryo-electron tomography, we show that inhibiting phage nucleus formation arrests infections at an early stage in which the injected phage genome is enclosed within a membrane-bound early phage infection (EPI) vesicle. We demonstrate that early phage genes are transcribed by the virion-associated RNA polymerase from the genome within the compartment, making the EPI vesicle the first known example of a lipid membrane-bound organelle that separates transcription from translation in prokaryotes. Further, we show that the phage nucleus is essential for the phage life cycle, with genome replication only beginning after the injected DNA is transferred from the EPI vesicle to the newly assembled phage nucleus. Our results show that Chimalliviridae require two sophisticated subcellular compartments of distinct compositions and functions that facilitate successive stages of the viral life cycle.
Collapse
Affiliation(s)
- Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Phoolwanti Rani
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
- These authors contributed equally: Emily G. Armbruster and Phoolwanti Rani
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Niklas Klusch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Lizbeth Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Buschkaemper
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Eray Enustun
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Koe Inlow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Arica R. VanderWal
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Madelynn Y. Hoffman
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Daksh Daksh
- National Institute of Science, Education and Research (NISER) Bhubaneshwar, Orissa 752050, India
| | - Ann Aindow
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaida K. Rodriguez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chase J. Morgan
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Majid Ghassemian
- Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G. Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emeric Charles
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - David F. Savage
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Singh D, Soni N, Hutchings J, Echeverria I, Shaikh F, Duquette M, Suslov S, Li Z, van Eeuwen T, Molloy K, Shi Y, Wang J, Guo Q, Chait BT, Fernandez-Martinez J, Rout MP, Sali A, Villa E. The molecular architecture of the nuclear basket. Cell 2024; 187:5267-5281.e13. [PMID: 39127037 DOI: 10.1016/j.cell.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Digvijay Singh
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neelesh Soni
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madeleine Duquette
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sergey Suslov
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhixun Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Kelly Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Elizabeth Villa
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Wang J, Wu M, Magupalli VG, Dahlberg PD, Wu H, Jensen GJ. Human NLRP3 inflammasome activation leads to formation of condensate at the microtubule organizing center. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612739. [PMID: 39314395 PMCID: PMC11419111 DOI: 10.1101/2024.09.12.612739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The NLRP3 inflammasome is a multi-protein molecular machine that mediates inflammatory responses in innate immunity. Its dysregulation has been linked to a large number of human diseases. Using cryogenic fluorescence-guided focused-ion-beam (cryo-FIB) milling and electron cryo-tomography (cryo-ET), we obtained 3-D images of the NLRP3 inflammasome in situ at various stages of its activation at macromolecular resolution. The cryo-tomograms unexpectedly reveal dense condensates of the human macrophage NLRP3 inflammasome that form within and around the microtubule organizing center (MTOC). We also find that following activation, the trans-Golgi network disperses and 50-nm NLRP3-associated vesicles appear which likely ferry NLRP3 to the MTOC. At later time points after activation, the electron-dense condensates progressively solidify and the cells undergo pyroptosis with widespread damaged mitochondria and autophagasomal structures.
Collapse
Affiliation(s)
- Jue Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Man Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Venkat G Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Peter D Dahlberg
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02446
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston MA 02446
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
12
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster E, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. An intron endonuclease facilitates interference competition between coinfecting viruses. Science 2024; 385:105-112. [PMID: 38963841 PMCID: PMC11620839 DOI: 10.1126/science.adl1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.
Collapse
Affiliation(s)
- Erica A. Birkholz
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Chase J. Morgan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Thomas G. Laughlin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Rebecca K. Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Amy Prichard
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sahana Rangarajan
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Gabrielle N. Meza
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Jina Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Emily Armbruster
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sergey Suslov
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kit Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Justin R. Meyer
- Department of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA
| | - Kevin D. Corbett
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Joe Pogliano
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
13
|
Singh D, Soni N, Hutchings J, Echeverria I, Shaikh F, Duquette M, Suslov S, Li Z, van Eeuwen T, Molloy K, Shi Y, Wang J, Guo Q, Chait BT, Fernandez-Martinez J, Rout MP, Sali A, Villa E. The Molecular Architecture of the Nuclear Basket. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587068. [PMID: 38586009 PMCID: PMC10996695 DOI: 10.1101/2024.03.27.587068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Digvijay Singh
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Neelesh Soni
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeleine Duquette
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sergey Suslov
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhixun Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Kelly Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Powell BM, Brant TS, Davis JH, Mosalaganti S. Rapid structural analysis of bacterial ribosomes in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586148. [PMID: 38585831 PMCID: PMC10996489 DOI: 10.1101/2024.03.22.586148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rapid structural analysis of purified proteins and their complexes has become increasingly common thanks to key methodological advances in cryo-electron microscopy (cryo-EM) and associated data processing software packages. In contrast, analogous structural analysis in cells via cryo-electron tomography (cryo-ET) remains challenging due to critical technical bottlenecks, including low-throughput sample preparation and imaging, and laborious data processing methods. Here, we describe the development of a rapid in situ cryo-ET sample preparation and data analysis workflow that results in the routine determination of sub-nm resolution ribosomal structures. We apply this workflow to E. coli, producing a 5.8 Å structure of the 70S ribosome from cells in less than 10 days, and we expect this workflow will be widely applicable to related bacterial samples.
Collapse
Affiliation(s)
- Barrett M. Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler S. Brant
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
15
|
Palao L, Murakami K, Chang YW. Combining per-particle cryo-ET and cryo-EM single particle analysis to elucidate heterogeneous DNA-protein organization. Curr Opin Struct Biol 2024; 84:102765. [PMID: 38181688 PMCID: PMC10922635 DOI: 10.1016/j.sbi.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.
Collapse
Affiliation(s)
- Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Chu X, Kudryashev M. Gentle ions for cryo-FIB milling. Structure 2023; 31:1147-1148. [PMID: 37802031 DOI: 10.1016/j.str.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Cryo-EM imaging of vitreous samples is limited to a few hundred nanometers in thickness. Focused ion beams can mill windows into cells and tissues for imaging, but they damage biological samples. In this issue of Structure, Yang et al. (2023) quantitatively describe this damage and suggest ways to minimize it.
Collapse
Affiliation(s)
- Xiaofeng Chu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Misha Kudryashev
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
17
|
Birkholz EA, Morgan CJ, Laughlin TG, Lau RK, Prichard A, Rangarajan S, Meza GN, Lee J, Armbruster EG, Suslov S, Pogliano K, Meyer JR, Villa E, Corbett KD, Pogliano J. A mobile intron facilitates interference competition between co-infecting viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560319. [PMID: 37808663 PMCID: PMC10557746 DOI: 10.1101/2023.09.30.560319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Mobile introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. Here we studied a mobile intron in bacteriophage ΦPA3 and found its homing endonuclease gp210 contributes to viral competition by interfering with the virogenesis of co-infecting phage ΦKZ. We show that gp210 targets a specific sequence in its competitor ΦKZ, preventing the assembly of progeny viruses. This work reports the first demonstration of how a mobile intron can be deployed to engage in interference competition and provide a reproductive advantage. Given the ubiquity of introns, this selective advantage likely has widespread evolutionary implications in nature.
Collapse
|
18
|
Sochacki KA, Sun WW, Michalak DJ, Kunamaneni P, Hinshaw JE, Taraska JW. Toward Plasma Membrane Visual Proteomics: Developing a Correlative Cryo-electron Tomography Pipeline for Isolated Plasma Membranes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:898. [PMID: 37613816 DOI: 10.1093/micmic/ozad067.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Kem A Sochacki
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Willy W Sun
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dennis J Michalak
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Prasanthi Kunamaneni
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jenny E Hinshaw
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy AE, Spencer T, Asavavimol A, Cafferata A, Cameron M, Chiu N, Davydov D, Desai I, Diaz G, Guereca M, Hearst K, Huang L, Jacobs E, Johnson A, Kahn S, Koch R, Martinez A, Norquist M, Pau T, Prasad G, Saam K, Sandhu M, Sarabia AJ, Schumaker S, Sonin A, Uyeno A, Zhao A, Corbett KD, Pogliano K, Meyer J, Grose JH, Villa E, Dutton R, Pogliano J. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. Cell Rep 2023; 42:112432. [PMID: 37120812 PMCID: PMC10299810 DOI: 10.1016/j.celrep.2023.112432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amber Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kyle P Thomas
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika E Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tara Spencer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aileen Asavavimol
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Allison Cafferata
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mia Cameron
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Chiu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Demyan Davydov
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Desai
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel Diaz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Guereca
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kiley Hearst
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leyi Huang
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily Jacobs
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Johnson
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Samuel Kahn
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ryan Koch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Adamari Martinez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meliné Norquist
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler Pau
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gino Prasad
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Saam
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Milan Sandhu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Angel Jose Sarabia
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Siena Schumaker
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aaron Sonin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariya Uyeno
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alison Zhao
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Dutton
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Haymaker A, Bardin AA, Gonen T, Martynowycz MW, Nannenga BL. Structure determination of a DNA crystal by MicroED. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538338. [PMID: 37163108 PMCID: PMC10168392 DOI: 10.1101/2023.04.25.538338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microcrystal electron diffraction (MicroED) is a powerful tool for determining high-resolution structures of microcrystals from a diverse array of biomolecular, chemical, and material samples. In this study, we apply MicroED to DNA crystals, which have not been previously analyzed using this technique. We utilized the d(CGCGCG) 2 DNA duplex as a model sample and employed cryo-FIB milling to create thin lamella for diffraction data collection. The MicroED data collection and subsequent processing resulted in a 1.10 Å resolution structure of the d(CGCGCG) 2 DNA, demonstrating the successful application of cryo-FIB milling and MicroED to the investigation of nucleic acid crystals.
Collapse
|
22
|
Wang S, Zhou H, Chen W, Jiang Y, Yan X, You H, Li X. CryoFIB milling large tissue samples for cryo-electron tomography. Sci Rep 2023; 13:5879. [PMID: 37041258 PMCID: PMC10090186 DOI: 10.1038/s41598-023-32716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Cryo-electron tomography (cryoET) is a powerful tool for exploring the molecular structure of large organisms. However, technical challenges still limit cryoET applications on large samples. In particular, localization and cutting out objects of interest from a large tissue sample are still difficult steps. In this study, we report a sample thinning strategy and workflow for tissue samples based on cryo-focused ion beam (cryoFIB) milling. This workflow provides a full solution for isolating objects of interest by starting from a millimeter-sized tissue sample and ending with hundred-nanometer-thin lamellae. The workflow involves sample fixation, pre-sectioning, a two-step milling strategy, and localization of the object of interest using cellular secondary electron imaging (CSEI). The milling strategy consists of two steps, a coarse milling step to improve the milling efficiency, followed by a fine milling step. The two-step milling creates a furrow-ridge structure with an additional conductive Pt layer to reduce the beam-induced charging issue. CSEI is highlighted in the workflow, which provides on-the-fly localization during cryoFIB milling. Tests of the complete workflow were conducted to demonstrate the high efficiency and high feasibility of the proposed method.
Collapse
Affiliation(s)
- Sihan Wang
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China
| | - Heng Zhou
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China
| | - Wei Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yifeng Jiang
- ZEISS Microscopy Customer Center, Beijing Laboratory, Beijing, 100088, China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, 100050, China.
| | - Xueming Li
- Key Laboratory for Protein Sciences of Ministry of Education, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Beijing, 100084, China.
- Advanced Innovation Center for Structural Biology, Beijing, 100084, China.
| |
Collapse
|
23
|
Dutka P, Liu Y, Maggi S, Ghosal D, Wang J, Carter SD, Zhao W, Vijayrajratnam S, Vogel JP, Jensen GJ. Structure and Function of the Dot/Icm T4SS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533729. [PMID: 36993699 PMCID: PMC10055428 DOI: 10.1101/2023.03.22.533729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The Legionella pneumophila Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components. We locate and provide insights into the structure and function of six new components including DotI, DotJ, DotU, IcmF, IcmT, and IcmX. We find that the cytosolic N-terminal domain of IcmF, a key protein forming a central hollow cylinder, interacts with DotU, providing insight into previously uncharacterized density. Furthermore, our model, in combination with analyses of compositional heterogeneity, explains how the cytoplasmic ATPase DotO is connected to the periplasmic complex via interactions with membrane-bound DotI/DotJ proteins. Coupled with in situ infection data, our model offers new insights into the T4SS-mediated secretion mechanism.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxi Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
24
|
Dow LP, Gaietta G, Kaufman Y, Swift MF, Lemos M, Lane K, Hopcroft M, Bezault A, Sauvanet C, Volkmann N, Pruitt BL, Hanein D. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat Commun 2022; 13:7831. [PMID: 36539423 PMCID: PMC9768166 DOI: 10.1038/s41467-022-35409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.
Collapse
Affiliation(s)
- Liam P. Dow
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Guido Gaietta
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Yair Kaufman
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Mark F. Swift
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA
| | - Moara Lemos
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Kerry Lane
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Matthew Hopcroft
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Armel Bezault
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Cécile Sauvanet
- grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France
| | - Niels Volkmann
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,Institut Pasteur, Université de Paris, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Beth L. Pruitt
- grid.133342.40000 0004 1936 9676Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA USA
| | - Dorit Hanein
- grid.465257.70000 0004 5913 8442Scintillon Institute, San Diego, CA USA ,grid.428999.70000 0001 2353 6535Institut Pasteur, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, F-75015 Paris, France ,grid.133342.40000 0004 1936 9676Present Address: Department of Chemistry and Biochemistry, and of Biomedical Engineering, University of California, Santa Barbara, CA USA
| |
Collapse
|
25
|
A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli. Cell Rep 2022; 40:111179. [PMID: 35977483 PMCID: PMC9891218 DOI: 10.1016/j.celrep.2022.111179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Nucleus-forming jumbo phages establish an intricate subcellular organization, enclosing phage genomes within a proteinaceous shell called the phage nucleus. During infection in Pseudomonas, some jumbo phages assemble a bipolar spindle of tubulin-like PhuZ filaments that positions the phage nucleus at midcell and drives its intracellular rotation. This facilitates the distribution of capsids on its surface for genome packaging. Here we show that the Escherichia coli jumbo phage Goslar assembles a phage nucleus surrounded by an array of PhuZ filaments resembling a vortex instead of a bipolar spindle. Expression of a mutant PhuZ protein strongly reduces Goslar phage nucleus rotation, demonstrating that the PhuZ cytoskeletal vortex is necessary for rotating the phage nucleus. While vortex-like cytoskeletal arrays are important in eukaryotes for cytoplasmic streaming and nucleus alignment, this work identifies a coherent assembly of filaments into a vortex-like structure driving intracellular rotation within the prokaryotic cytoplasm.
Collapse
|
26
|
Laughlin TG, Deep A, Prichard AM, Seitz C, Gu Y, Enustun E, Suslov S, Khanna K, Birkholz EA, Armbruster E, McCammon JA, Amaro RE, Pogliano J, Corbett KD, Villa E. Architecture and self-assembly of the jumbo bacteriophage nuclear shell. Nature 2022; 608:429-435. [PMID: 35922510 PMCID: PMC9365700 DOI: 10.1038/s41586-022-05013-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022]
Abstract
Bacteria encode myriad defences that target the genomes of infecting bacteriophage, including restriction-modification and CRISPR-Cas systems1. In response, one family of large bacteriophages uses a nucleus-like compartment to protect its replicating genomes by excluding host defence factors2-4. However, the principal composition and structure of this compartment remain unknown. Here we find that the bacteriophage nuclear shell assembles primarily from one protein, which we name chimallin (ChmA). Combining cryo-electron tomography of nuclear shells in bacteriophage-infected cells and cryo-electron microscopy of a minimal chimallin compartment in vitro, we show that chimallin self-assembles as a flexible sheet into closed micrometre-scale compartments. The architecture and assembly dynamics of the chimallin shell suggest mechanisms for its nucleation and growth, and its role as a scaffold for phage-encoded factors mediating macromolecular transport, cytoskeletal interactions, and viral maturation.
Collapse
Affiliation(s)
- Thomas G Laughlin
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Amy M Prichard
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Christian Seitz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eray Enustun
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sergey Suslov
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kanika Khanna
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Erica A Birkholz
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emily Armbruster
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Joe Pogliano
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| | - Elizabeth Villa
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Waffle Method: A general and flexible approach for improving throughput in FIB-milling. Nat Commun 2022; 13:1857. [PMID: 35387991 PMCID: PMC8987090 DOI: 10.1038/s41467-022-29501-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the ‘Waffle Method’ which leverages high-pressure freezing to address these challenges. We illustrate the mitigation of these challenges by applying the Waffle Method and cryo-ET to reveal the macrostructure of the polar tube in microsporidian spores in multiple complementary orientations, which was previously not possible due to preferred orientation. We demonstrate the broadness of the Waffle Method by applying it to three additional cellular samples and a single particle sample using a variety of cryo-FIB-milling hardware, with manual and automated approaches. We also present a unique and critical stress-relief gap designed specifically for waffled lamellae. We propose the Waffle Method as a way to achieve many advantages of cryo-liftout on the specimen grid while avoiding the long, challenging, and technically-demanding process required for cryo-liftout. Here the authors describe the Waffle Method, aimed at increasing the throughput of and solves several challenges present in cryo-FIB/SEM sample preparation for cryo-ET analysis — the highest-resolution method for obtaining 3D views of native biological specimens in-situ.
Collapse
|