1
|
Parra-Flores J, Daza-Prieto B, Chavarria P, Troncoso M, Stöger A, Figueroa G, Mancilla-Rojano J, Cruz-Córdova A, Martinovic A, Ruppitsch W. From Traditional Typing to Genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes Isolated from Refrigerated Foods in Chile. Foods 2025; 14:290. [PMID: 39856956 PMCID: PMC11765429 DOI: 10.3390/foods14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Ready-to-eat (RTE) foods are the most common sources of Listeria monocytogenes transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 L. monocytogenes strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety. Using cgMLST, a cluster was identified comprising 2 strains with zero allele differences among the 16 strains evaluated. Ninety-four percent of the isolates (15/16) were serotype 1/2b, and 88% of them (14/16) were ST5. All strains shared identical virulence genes related to adhesion (ami, iap, lapB), stress resistance (clpCEP), invasion (aut, iapcwhA, inlAB, lpeA), toxin production (hly), and intracellular regulation (prfA), with only 13 strains exhibiting the bcrBC and qacJ gene, which confer resistance to quaternary ammonium. The pCFSAN010068_01 plasmids were prevalent, and insertion sequences (ISLs) and composite transposons (cns) were detected in 87.5% of the strains. The presence of various antibiotic resistance genes, along with resistance to thermal shocks and disinfectants, may provide L. monocytogenes ST5 strains with enhanced environmental resistance to the hygiene treatments used in the studied food production plant.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Pamela Chavarria
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Miriam Troncoso
- Fundación Instituto Profesional Duoc UC, Santiago 8240000, Chile;
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile;
| | - Jetsi Mancilla-Rojano
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Ariadnna Cruz-Córdova
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Aleksandra Martinovic
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| |
Collapse
|
2
|
Brown P, Kucerova Z, Gorski L, Chen Y, Ivanova M, Leekitcharoenphon P, Parsons C, Niedermeyer J, Jackson J, Kathariou S. Horizontal Gene Transfer and Loss of Serotype-Specific Genes in Listeria monocytogenes Can Lead to Incorrect Serotype Designations with a Commonly-Employed Molecular Serotyping Scheme. Microbiol Spectr 2023; 11:e0274522. [PMID: 36472431 PMCID: PMC9927564 DOI: 10.1128/spectrum.02745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive, facultative intracellular foodborne pathogen capable of causing severe, invasive illness (listeriosis). Three serotypes, 1/2a, 1/2b, and 4b, are leading contributors to human listeriosis, with 4b including the major hypervirulent clones. The multiplex PCR scheme developed by Doumith and collaborators employs primers targeting specific lineages (e.g., lineage II-specific lmo0737, lineage I-specific LMOf2365_2059) or serotypes (e.g., serotype 4b-specific LMOf2365_1900). The Doumith scheme (DS) is extensively employed for molecular serotyping of L. monocytogenes due to its high accuracy, relative ease, and affordability. However, for certain strains, the DS serotype designations are in conflict with those relying on antibody-based schemes or whole-genome sequence (WGS) analysis. In the current study, all 27 tested serotype 4b strains with sequence type 782 (ST782) within the hypervirulent clonal complex 2 (CC2) were designated 1/2b/3b using the DS. These strains lacked the serotype 4b-specific gene LMOf2365_1900, while retaining LMOf2365_2059, which, together with prs, yields the DS 1/2b/3b profile. Furthermore, 15 serotype 1/2a strains of four STs, mostly from water, were designated 1/2b/3b using the DS. These strains lacked the lmo0737 cassette but harbored genomic islands with LMOf2365_2059, thus yielding the DS 1/2b/3b profile. Lastly, we investigated a novel, dual 1/2a-1/2b profile obtained using the DS with 21 serotype 1/2a strains of four STs harboring both the lmo0737 cassette and genomic islands with LMOf2365_2059. The findings suggest that for certain strains and clones of L. monocytogenes the DS designations should be viewed with caution and complemented with alternative tools, e.g., traditional serotyping or WGS analysis. IMPORTANCE Listeria monocytogenes is a foodborne pathogen responsible for severe illness (listeriosis), especially in pregnant women and their fetuses, immunocompromised individuals, and the elderly. Three serotypes, 1/2a, 1/2b, and 4b, account for most human listeriosis, with certain serotype 4b clonal complexes (CCs) overrepresented in human disease. Serotyping remains extensively employed in Listeria epidemiologic investigations, and a multiplex PCR-based serotyping scheme is widely used. However, the PCR gene targets can be lost or gained via horizontal gene transfer, leading to novel PCR profiles without known serotype designations or to incorrect serotype assignments. Thus, an entire serotype 4b clone of the hypervirulent CC2 would be misidentified as serotype 1/2b, and several strains of serotype 1/2a would be identified as serotype 1/2b. Such challenges are especially common in novel clones from underexplored habitats, e.g., wildlife and surface water. The findings suggest caution in application of molecular serotyping, while highlighting Listeria's diversity and potential for horizontal gene transfer.
Collapse
Affiliation(s)
- Phillip Brown
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Zuzana Kucerova
- Centers for Disease Control and Prevention (CDC), EDLB/DFWED, Atlanta, Georgia, USA
| | - Lisa Gorski
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, California, USA
| | - Yi Chen
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, USA
| | - Mirena Ivanova
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Cameron Parsons
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jeffrey Niedermeyer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - James Jackson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Mabrok M, Algammal AM, Sivaramasamy E, Hetta HF, Atwah B, Alghamdi S, Fawzy A, Avendaño-Herrera R, Rodkhum C. Tenacibaculosis caused by Tenacibaculum maritimum: Updated knowledge of this marine bacterial fish pathogen. Front Cell Infect Microbiol 2023; 12:1068000. [PMID: 36683696 PMCID: PMC9853564 DOI: 10.3389/fcimb.2022.1068000] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023] Open
Abstract
Tenacibaculosis occurs due to the marine bacterial pathogen Tenacibaculum maritimum. This ulcerative disease causes high mortalities for various marine fish species worldwide. Several external clinical signs can arise, including mouth erosion, epidermal ulcers, fin necrosis, and tail rot. Research in the last 15 years has advanced knowledge on the traits and pathogenesis mechanisms of T. maritimum. Consequently, significant progress has been made in defining the complex host-pathogen relationship. Nevertheless, tenacibaculosis pathogenesis is not yet fully understood. Continued research is urgently needed, as demonstrated by recent reports on the re-emerging nature of tenacibaculosis in salmon farms globally. Current sanitary conditions compromise the development of effective alternatives to antibiotics, in addition to hindering potential preventive measures against tenacibaculosis. The present review compiles knowledge of T. maritimum reported after the 2006 review by Avendaño-Herrera and colleagues. Essential aspects are emphasized, including antigenic and genomic characterizations and molecular diagnostic procedures. Further summarized are the epidemiological foundations of the T. maritimum population structure and elucidations as to the virulence mechanisms of pathogenic isolates, as found using biological, microbiological, and genomic techniques. This comprehensive source of reference will undoubtable serve in tenacibaculosis prevention and control within the marine fish farming industry. Lastly, knowledge gaps and valuable research areas are indicated as potential guidance for future studies.
Collapse
Affiliation(s)
- Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt,Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Elayaraja Sivaramasamy
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Banan Atwah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aml Fawzy
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Directorate of Veterinary Medicine, Ismailia, Egypt
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile,Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile,*Correspondence: Channarong Rodkhum, ; Ruben Avendaño-Herrera, ;
| | - Channarong Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Channarong Rodkhum, ; Ruben Avendaño-Herrera, ;
| |
Collapse
|
4
|
Lopez P, Bridel S, Saulnier D, David R, Magariños B, Torres BS, Bernardet JF, Duchaud E. Genomic characterization of Tenacibaculum maritimum O-antigen gene cluster and development of a multiplex PCR-based serotyping scheme. Transbound Emerg Dis 2022; 69:e2876-e2888. [PMID: 35731505 PMCID: PMC9796276 DOI: 10.1111/tbed.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023]
Abstract
Tenacibaculum maritimum is a devastating bacterial pathogen affecting a large variety of marine fish species. It is responsible for significant economic losses in aquaculture farms worldwide. Different typing methods have been proposed to analyse bacterial diversity and population structure. Serological heterogeneity has been observed and up to four different serotypes have been described so far. However, the underlying molecular factors remain unknown. By combining conventional serotyping and genome-wide association study, we identified the genomic loci likely involved in the O-antigen biosynthesis. This finding allowed the development of a robust multiplex PCR-based serotyping scheme able to detect subgroups within each serotype and therefore performs better than conventional serotyping. This scheme was successfully applied to a large number of isolates from worldwide origin and retrieved from a large variety of fish species. No obvious correlations were observed between the mPCR-based serotype and the host species or the geographic origin of the isolates. Strikingly, the distribution of mPCR-based serotypes does not follow the core genome phylogeny. Nevertheless, this simple and cost-effective mPCR-based serotyping method could be useful for different applications such as population structure analysis, disease surveillance, vaccine formulation and efficacy follow-up.
Collapse
Affiliation(s)
- Pierre Lopez
- IfremerIRDInstitut Louis MalardéUniv Polynésie FrançaiseEIOLabex CorailTaravaoFrench Polynesia,Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance
| | - Sébastien Bridel
- Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance,Biodiversity and Epidemiology of Bacterial PathogensInstitut Pasteur, Université de ParisParis75015France
| | - Denis Saulnier
- IfremerIRDInstitut Louis MalardéUniv Polynésie FrançaiseEIOLabex CorailTaravaoFrench Polynesia
| | - Rarahu David
- DRM, Direction des Ressources MarinesFare Ute Immeuble Le caillPapeeteFrench Polynesia
| | - Beatriz Magariños
- Departamento de Microbiología, Facultad de Biología/CIBUSUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
| | - Beatriz S. Torres
- Departamento de Microbiología, Facultad de Biología/CIBUSUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
| | | | - Eric Duchaud
- Université Paris‐SaclayINRAEUVSQVIMJouy‐en‐JosasFrance
| |
Collapse
|
5
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
6
|
Nonhemolytic Listeria monocytogenes-Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms 2022; 10:microorganisms10020483. [PMID: 35208937 PMCID: PMC8874635 DOI: 10.3390/microorganisms10020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that typically presents β-hemolytic activity. However, there are literature reports indicating that L. monocytogenes strains are sometimes nonhemolytic or their zones of hemolysis are perceivable only after removal of the colonies from the agar plate. Nonhemolytic L. monocytogenes are most commonly encountered in food products, but some have also been detected in clinical samples. Usually, atypical bacteria of this species belong to serotype 1/2a. Mutations of the prfA gene sequence are the most common reason for changed phenotype, and mutations of the hly gene are the second most common cause. There are also reports that the methodology used for detecting hemolysis may influence the results. Sheep or horse blood, although most commonly used in modern studies, may not allow for the production of clear hemolytic zones on blood agar, whereas other types of blood (guinea pig, rabbit, piglet, and human) are more suitable according to some studies. Furthermore, the standard blood agar plate technique is less sensitive than its modifications such as bilayer or top-layer (overlay) techniques. The microplate technique (employing erythrocyte suspensions) is probably the most informative when assessing listerial hemolysis and is the least susceptible to subjective interpretation.
Collapse
|