1
|
Xiao D, Fang L, Liu Z, He Y, Ying J, Qin H, Lu A, Shi M, Li T, Zhang B, Guan J, Wang C, Abu-Amer Y, Shen J. DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation. J Clin Invest 2023; 134:e168558. [PMID: 38051594 PMCID: PMC10849763 DOI: 10.1172/jci168558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liang Fang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zhongting Liu
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Yonghua He
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Haocheng Qin
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiwu Lu
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Meng Shi
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Sciences, School of Engineering and
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
- Shriners Hospital for Children, St. Louis, Missouri, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Wu H, Tan J, Sun D, Wang X, Shen J, Wang S, Dai Q, Wei Z, Li G, Lin S, Luo F, Xie Z. Discovery of multipotent progenitor cells from human induced membrane: Equivalent to periosteum-derived stem cells in bone regeneration. J Orthop Translat 2023; 42:82-93. [PMID: 37705762 PMCID: PMC10495554 DOI: 10.1016/j.jot.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The periosteum stem cells (PSCs) plays a critical role in bone regeneration and defect reconstruction. Insertion of polymethyl methacrylate (PMMA) bone cement can form an induced membrane(IM) and showed promising strategy for bone defect reconstruction, the underlying mechanism remains unclear. Our study sought to determine whether IM-derived cells(IMDCs) versus PSCs have similar characteristics in bone regeneration. METHODS IM and periosteum were harvested from ten bone defect patients treated with PMMA, the IMDCs and PSCs were isolated respectively. Morphological, functional and molecular evaluation was performed and matched for comparison. RESULTS Both progenitor-like IMDCs and PSCs were successfully isolated. In vitro, we found IMDCs were similar to PSCs in morphology, colony forming capacity and expression of surface marker(CD90+, CD73+, CD105+, CD34-/CD45-). Meanwhile, these IMSCs displayed multipotency with chondrogenic, adipogenic and osteogenic differentiation, but differed in some IMSCs(3/10) population showing relatively poor osteogenic differentiation. The molecular profiles suggests that cell cycle and DNA replication signaling pathways were associated with these varying osteogenic potential. In vivo, we established a cell-based tissue-engineered bone by seeding IMDSs/PSCs to demineralized bone matrix (DBM) scaffold and demonstrated both IMDSs and PSCs enhanced bone regeneration in SCID mice bone defect model compared with DBM alone. CONCLUSION Our data demonstrated IM containing multipotent progenitor cells similar to that periosteum promoting bone regeneration, and indicated the existence of multiple subsets in osteogenic differentiation. Overall, the study provided a cellular and molecular insights in understanding the successful or failed outcome of bone defect healing.The translational potential of this article: This study confirmed IMDCs and PSCs share similar regeneration capacity and inform a translation potential of that cellular therapy applying IMDCs in bone defect repair.
Collapse
Affiliation(s)
- Hongri Wu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
- Department of Orthopaedics, Navy 905 Hospital, Navy Medical University, Shanghai, PR China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Dong Sun
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Xiaohua Wang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Jie Shen
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Shulin Wang
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Qijie Dai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhiyuan Wei
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhao Xie
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|