1
|
Oqua AI, Chao K, El Eid L, Casteller L, Baxter BP, Miguéns-Gómez A, Barg S, Jones B, Bernardino de la Serna J, Rouse SL, Tomas A. Molecular mapping and functional validation of GLP-1R cholesterol binding sites in pancreatic beta cells. eLife 2025; 13:RP101011. [PMID: 40270220 PMCID: PMC12021413 DOI: 10.7554/elife.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.
Collapse
Affiliation(s)
- Affiong Ika Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Kin Chao
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Liliane El Eid
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | - Lisa Casteller
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Billy P Baxter
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | | | - Sebastian Barg
- Department of Medical Cell Biology, University of UppsalaUppsalaSweden
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| | | | - Sarah L Rouse
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Zhang Y, Tian X, Chen L, Zhao S, Tang X, Liu X, Zhou D, Tang C, Geng B, Du J, Jin H, Huang Y. Endogenous hydrogen sulfide persulfidates endothelin type A receptor to inhibit pulmonary arterial smooth muscle cell proliferation. Redox Biol 2025; 80:103493. [PMID: 39823888 PMCID: PMC11787542 DOI: 10.1016/j.redox.2025.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (H2S) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous H2S/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation. METHODS AND RESULTS Both live cell imaging and ligand-receptor assays revealed that H2S donor, NaHS, inhibited the binding of ET-1/ETAR in human PASMCs (HPASMCs) and HEK-293A cells, along with an inhibition of ET-1-activated HPASMC proliferation. While, an upregulated Ki-67 expression by the pulmonary arteries, a marked pulmonary artery structural remodeling, and an increased pulmonary artery pressure were observed in CSE knockout (CSE-KO) mice with a deficient H2S/CSE pathway compared with those in the wild type (WT) mice. Meanwhile, NaHS rescued the enhanced binding of ET-1 with ETAR and cell proliferation in the CSE-knockdowned HPASMCs. Moreover, the ETAR antagonist BQ123 blocked the enhanced proliferation of CSE-knockdowned HPASMCs. Mechanistically, ETAR persulfidation was reduced in the lung tissues of CSE-KO mice compared to that in WT mice, which could be reversed by NaHS treatment. Similarly, NaHS persulfidated ETAR in HPASMCs and HEK-293A cells. Whereas a thiol reductant dithiothreitol (DTT) reversed the H2S-induced ETAR persulfidation and further blocked the H2S-inhibited binding of ET-1/ETAR and HPASMC proliferation. Furthermore, the mutation of ETAR at cysteine (Cys) 69 abolished the persulfidation of ETAR by H2S, and subsequently blocked the H2S-suppressed ET-1/ETAR binding and HPASMC proliferation. CONCLUSION Endogenous H2S persulfidated ETAR at Cys69 to inhibit the binding of ET-1 to ETAR, subsequently suppressed PASMC proliferation, and antagonized pulmonary vascular structural remodeling.
Collapse
MESH Headings
- Hydrogen Sulfide/metabolism
- Hydrogen Sulfide/pharmacology
- Cell Proliferation/drug effects
- Animals
- Humans
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin A/genetics
- Cystathionine gamma-Lyase/genetics
- Cystathionine gamma-Lyase/metabolism
- Endothelin-1/metabolism
- HEK293 Cells
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Signal Transduction
- Male
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China; National Center for Nanoscience and Technology, Beijing, 100871, PR China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, PR China; National Center for Nanoscience and Technology, Beijing, 100871, PR China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd, Beijing, 100191, PR China
| | - Xin Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China
| | - Dan Zhou
- Department of Cardiology, Wuhan Children's Hospital, Wuhan, PR China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, PR China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, PR China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China.
| |
Collapse
|
3
|
Cytokine receptor cluster size impacts its endocytosis and signaling. Proc Natl Acad Sci U S A 2021; 118:2024893118. [PMID: 34504012 DOI: 10.1073/pnas.2024893118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.
Collapse
|