1
|
Hardaker EL, Sanseviero E, Karmokar A, Taylor D, Milo M, Michaloglou C, Hughes A, Mai M, King M, Solanki A, Magiera L, Miragaia R, Kar G, Standifer N, Surace M, Gill S, Peter A, Talbot S, Tohumeken S, Fryer H, Mostafa A, Mulgrew K, Lam C, Hoffmann S, Sutton D, Carnevalli L, Calero-Nieto FJ, Jones GN, Pierce AJ, Wilson Z, Campbell D, Nyoni L, Martins CP, Baker T, Serrano de Almeida G, Ramlaoui Z, Bidar A, Phillips B, Boland J, Iyer S, Barrett JC, Loembé AB, Fuchs SY, Duvvuri U, Lou PJ, Nance MA, Gomez Roca CA, Cadogan E, Critichlow SE, Fawell S, Cobbold M, Dean E, Valge-Archer V, Lau A, Gabrilovich DI, Barry ST. The ATR inhibitor ceralasertib potentiates cancer checkpoint immunotherapy by regulating the tumor microenvironment. Nat Commun 2024; 15:1700. [PMID: 38402224 PMCID: PMC10894296 DOI: 10.1038/s41467-024-45996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.
Collapse
Affiliation(s)
| | | | | | - Devon Taylor
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Mimi Mai
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan Standifer
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Tempest Therapeutics, Brisbane, CA, USA
| | | | - Shaan Gill
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Ali Mostafa
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Kathy Mulgrew
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | - Daniel Sutton
- Imaging and Data Analytics, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Oncology R&D, AstraZeneca, Cambridge, UK
- Crescendo Biologics Limited, Cambridge, UK
| | | | | | | | | | | | | | | | - Abdel Bidar
- CPSS, Imaging, AstraZeneca, Gothenburg, Sweden
| | - Benjamin Phillips
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Joseph Boland
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Sonia Iyer
- Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Umamaheswar Duvvuri
- UPMC Department of Otolaryngology and UPMC Hillman Cancer Center, 200 Lothrop St. Suite 500, Pittsburg, PA, 15213, USA
| | - Pei-Jen Lou
- National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City, 10002, Taiwan
| | - Melonie A Nance
- VA Pittsburgh Healthcare System, University Drive C, Pittsburg, PA, 15240, USA
| | - Carlos Alberto Gomez Roca
- Institut Claudius Regaud-Cancer Comprehensive Center, 1 Avenue Irene Joliot-Curie, IUCT-O, Toulouse, 31059 Cedex 9, France
| | | | | | | | - Mark Cobbold
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Alan Lau
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
2
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Siemińska I, Węglarczyk K, Walczak M, Czerwińska A, Pach R, Rubinkiewicz M, Szczepanik A, Siedlar M, Baran J. Mo-MDSCs are pivotal players in colorectal cancer and may be associated with tumor recurrence after surgery. Transl Oncol 2022; 17:101346. [PMID: 35074719 PMCID: PMC8789589 DOI: 10.1016/j.tranon.2022.101346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy. Its development and progression is associated with natural immunosuppression related, among others, to myeloid derived suppressor cells (MDSCs). Overall, 54 patients in different stage of CRC, before any treatment were recruited into the study. The analysis included flow cytometry evaluation of blood MDSCs subsets, correlation their level with the tumor stage and T cell subsets. In the case of 11 patients, MDSCs level was evaluated before and 3 days after surgery, and these patients were monitored for cancer recurrence over 5 years. The results showed that frequency of circulating MDSCs subsets is increased significantly in CRC patients, with highest level detected in most advanced tumor stages. Moreover, only monocytic MDSCs (Mo-MDSCs) positively correlate with regulatory Treg, and negatively with tumor Her2/neu specific CD8+ T cells. Circulating MDSCs, in contrast to tumor resident (mostly Mo-MDSCs), are negative for PD-L1 expression. Additionally, after surgery the blood level of Mo-MDSCs increases significantly, and this is associated with tumor recurrence during a 5-year follow-up. In conclusion, Mo-MDSCs are pivotal players in CRC-related immunosuppression and may be associated with the risk of tumor recurrence after surgery.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka str. 265, Krakow 30-663, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka str. 265, Krakow 30-663, Poland
| | - Marta Walczak
- First Department of General Surgery, Jagiellonian University Medical College, M. Jakubowskiego str. 2, Krakow 30-688, Poland
| | - Agata Czerwińska
- Second Department of General Surgery, Jagiellonian University Medical College, M. Jakubowskiego str. 2, Krakow 30-688, Poland
| | - Radosław Pach
- First Department of General Surgery, Jagiellonian University Medical College, M. Jakubowskiego str. 2, Krakow 30-688, Poland
| | - Mateusz Rubinkiewicz
- Second Department of General Surgery, Jagiellonian University Medical College, M. Jakubowskiego str. 2, Krakow 30-688, Poland
| | - Antoni Szczepanik
- First Department of General Surgery, Jagiellonian University Medical College, M. Jakubowskiego str. 2, Krakow 30-688, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka str. 265, Krakow 30-663, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka str. 265, Krakow 30-663, Poland.
| |
Collapse
|
4
|
Siemińska I, Węglarczyk K, Surmiak M, Kurowska-Baran D, Sanak M, Siedlar M, Baran J. Mild and Asymptomatic COVID-19 Convalescents Present Long-Term Endotype of Immunosuppression Associated With Neutrophil Subsets Possessing Regulatory Functions. Front Immunol 2021; 12:748097. [PMID: 34659245 PMCID: PMC8511487 DOI: 10.3389/fimmu.2021.748097] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Kurowska-Baran
- Department of Clinical Microbiology, Laboratory of Virology and Serology, University Children’s Hospital, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|