1
|
Ferreira MDS, Gonçalves DDS, Mendoza SR, de Oliveira GA, Pontes B, la Noval CRD, Honorato L, Ramos LFC, Nogueira FCS, Domont GB, Casadevall A, Nimrichter L, Peralta JM, Guimaraes AJ. β-1,3-Glucan recognition by Acanthamoeba castellanii as a putative mechanism of amoeba-fungal interactions. Appl Environ Microbiol 2024; 90:e0173623. [PMID: 38259076 PMCID: PMC10880599 DOI: 10.1128/aem.01736-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal β-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface β-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a β-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble β-1,3-glucan substantially inhibited this adhesion, indicating the involvement of β-1,3-glucan recognition. Biotinylated β-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the β-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding β-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to β-1,3-glucans. These findings underscore the complexity of binding via β-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of β-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for β-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.
Collapse
Affiliation(s)
- Marina da Silva Ferreira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Diego de Souza Gonçalves
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Susana Ruiz Mendoza
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gabriel Afonso de Oliveira
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas e Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Claudia Rodríguez-de la Noval
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Leandro Honorato
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Luis Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Fábio C. S. Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Gilberto B. Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leonardo Nimrichter
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Laboratório de Glicobiologia de Eucariotos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
| | - Jose Mauro Peralta
- Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
| | - Allan J. Guimaraes
- Laboratório de Bioquímica e Imunologia das Micoses, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Niterói, Rio de Janeiro, Brazil
- Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Blanco S, Morán P, Diz AP, Olabarria C, Vázquez E. Effects of short-term hyposalinity stress on four commercially important bivalves: A proteomic perspective. ENVIRONMENTAL RESEARCH 2022; 215:114371. [PMID: 36162473 DOI: 10.1016/j.envres.2022.114371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Increased heavy rainfall can reduce salinity to values close to 0 in estuaries. Lethal and sublethal physiological and behavioural effects of decreases in salinity below ten have already been found to occur in the commercially important clam species Venerupis corrugata, Ruditapes decussatus and R. philippinarum and the cockle Cerastoderma edule, which generate an income of ∼74 million euros annually in Galicia (NW Spain). However, studies of the molecular response to hyposaline stress in bivalves are scarce. This 'shotgun' proteomics study evaluates changes in mantle-edge proteins subjected to short-term hyposaline episodes in two different months (March and May) during the gametogenic cycle. We found evidence that the mantle-edge proteome was more responsive to sampling time than to hyposalinity, strongly suggesting that reproductive stages condition the stress response. However, hyposalinity modulated proteome profiles in V. corrugata and C. edule in both months and R. philippinarum in May, involving proteins implicated in protein folding, redox homeostasis, detoxification, cytoskeleton modulation and the regulation of apoptotic, autophagic and lipid degradation pathways. However, proteins that are essential for an optimal osmotic stress response but which are highly energy demanding, such as chaperones, osmoprotectants and DNA repair factors, were found in small relative abundances. In both months in R. decussatus and in March in R. philippinarum, almost no differences between treatments were detected. Concordant trends in the relative abundance of stress response candidate proteins were also obtained in V. corrugata and C. edule in the different months, but not in Ruditapes spp., strongly suggesting that the osmotic stress response in bivalves is complex and possibly influenced by a combination of controlled (sampling time) and uncontrolled variables. In this paper, we report potential molecular targets for studying the response to osmotic stress, especially in the most osmosensitive native species C. edule and V. corrugata, and suggest factors to consider when searching for biomarkers of hyposaline stress in bivalves.
Collapse
Affiliation(s)
- S Blanco
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - P Morán
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - A P Diz
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - C Olabarria
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| | - E Vázquez
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
3
|
Schönemann AM, Beiras R, Diz AP. Widespread alterations upon exposure to the estrogenic endocrine disruptor ethinyl estradiol in the liver proteome of the marine male fish Cyprinodon variegatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106189. [PMID: 35537357 DOI: 10.1016/j.aquatox.2022.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Quantitative proteomic changes in the liver of adult males of Sheepshead minnow (Cyprinodon variegatus) upon exposure to ethinyl estradiol (EE2) were assessed to provide an advanced understanding of the metabolic pathways affected by estrogenic endocrine disruption in marine fish, and to identify potential novel molecular biomarkers for the environmental exposure to estrogens. From a total of 3188 identified protein groups (hereafter proteins), 463 showed a statistically significant difference in their abundance between EE2 treatment and solvent control samples. The most affected biological processes upon EE2 exposure were related to ribosomal biogenesis, protein synthesis and transport of nascent proteins to endoplasmic reticulum, and nuclear mRNA catabolism. Within the group of upregulated proteins, a subset of 14 proteins, involved in egg production (Vitellogenin, Zona Pellucida), peptidase activity (Cathepsine E, peptidase S1, Serine/threonine-protein kinase PRP4 homolog, Isoaspartyl peptidase and Whey acidic protein), and nucleic acid binding (Poly [ADP-ribose] polymerase 14) were significantly upregulated with fold-change values higher than 3. In contrast, Collagen alpha-2, involved in the process of response to steroid hormones, among others, was significantly downregulated (fold change = 0.2). This pattern of alterations in the liver proteome of adult males of C. variegatus can be used to identify promising novel biomarkers for the characterization of exposure of marine fish to estrogens. The Whey acidic protein-like showed the highest upregulation in EE2-exposed individuals (21-fold over controls), suggesting the utility of abundance levels of this protein in male liver as a novel biomarker of xenoestrogen exposure.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
| |
Collapse
|
4
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|