1
|
Wang T, Whitcher-Johnstone A, Scaringella YS, Keith-Luzzi M, Shao J, Taub ME, Chan TS. Comparison of Commonly Used and New Methods to Determine Small Molecule Non-Specific Binding to Human Liver Microsomes. J Pharm Sci 2024; 113:1987-1995. [PMID: 38615815 DOI: 10.1016/j.xphs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Accurate measurement of non-specific binding of a drug candidate to human liver microsomes (HLM) can be critical for the accurate determination of key enzyme kinetic parameters such as Michaelis-Menton (Km), reversible inhibition (Ki), or inactivation (KI) constants. Several methods have been developed to determine non-specific binding of small molecules to HLM, such as rapid equilibrium dialysis (RED), ultrafiltration (UF), HLM bound to magnetizable beads (HLM-beads), ultracentrifugation (UC), the linear extrapolation stability assay (LESA), and the Transil™ system. Despite various differences in methodology between these methods, it is generally presumed that similar free fraction values (fu,mic) should be generated. To evaluate this hypothesis, a test set of 9 compounds were selected, representing low (high fu,mic value) and significant (low fu,mic value) HLM binding, respectively, across HLM concentrations tested in this manuscript. The fu,mic values were determined using a single compound concentration (1.0 µM) and three HLM concentrations (0.025, 0.50, and 1.0 mg/mL). When the HLM non-specific binding event is not extensive resulting in high fu,mic values, all methods generated similar fu,mic values. However, fu,mic values varied markedly across assay formats when high binding to HLM occurred, where fu,mic values differed by up to 33-fold depending on the method used. Potential causes for such discrepancies across the various methods employed, practical implications related to conduct the different assays, and implications to clinical drug-drug interaction (DDI) predictions are discussed.
Collapse
Affiliation(s)
- Ting Wang
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA.
| | | | - Young Sun Scaringella
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Monica Keith-Luzzi
- Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Juntang Shao
- Anhui Medical University, 1980 Meishan Road, Anhui, China
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| | - Tom S Chan
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Rd., Ridgefield, CT 06877, USA
| |
Collapse
|
2
|
Najjar A, Punt A, Wambaugh J, Paini A, Ellison C, Fragki S, Bianchi E, Zhang F, Westerhout J, Mueller D, Li H, Shi Q, Gant TW, Botham P, Bars R, Piersma A, van Ravenzwaay B, Kramer NI. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment. Arch Toxicol 2022; 96:3407-3419. [PMID: 36063173 PMCID: PMC9584981 DOI: 10.1007/s00204-022-03356-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
With an increasing need to incorporate new approach methodologies (NAMs) in chemical risk assessment and the concomitant need to phase out animal testing, the interpretation of in vitro assay readouts for quantitative hazard characterisation becomes more important. Physiologically based kinetic (PBK) models, which simulate the fate of chemicals in tissues of the body, play an essential role in extrapolating in vitro effect concentrations to in vivo bioequivalent exposures. As PBK-based testing approaches evolve, it will become essential to standardise PBK modelling approaches towards a consensus approach that can be used in quantitative in vitro-to-in vivo extrapolation (QIVIVE) studies for regulatory chemical risk assessment based on in vitro assays. Based on results of an ECETOC expert workshop, steps are recommended that can improve regulatory adoption: (1) define context and implementation, taking into consideration model complexity for building fit-for-purpose PBK models, (2) harmonise physiological input parameters and their distribution and define criteria for quality chemical-specific parameters, especially in the absence of in vivo data, (3) apply Good Modelling Practices (GMP) to achieve transparency and design a stepwise approach for PBK model development for risk assessors, (4) evaluate model predictions using alternatives to in vivo PK data including read-across approaches, (5) use case studies to facilitate discussions between modellers and regulators of chemical risk assessment. Proof-of-concepts of generic PBK modelling approaches are published in the scientific literature at an increasing rate. Working on the previously proposed steps is, therefore, needed to gain confidence in PBK modelling approaches for regulatory use.
Collapse
Affiliation(s)
| | - Ans Punt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - John Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC USA
| | | | | | - Styliani Fragki
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Joost Westerhout
- The Netherlands Organisation for Applied Scientific Research TNO, Utrecht, The Netherlands
| | - Dennis Mueller
- Research and Development, Crop Science, Bayer AG, Monheim, Germany
| | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire UK
| | - Quan Shi
- Shell Global Solutions International B.V, The Hague, The Netherlands
| | - Timothy W. Gant
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Phil Botham
- Syngenta, Jealott’s Hill, Bracknell, Berkshire UK
| | - Rémi Bars
- Crop Science Division, Bayer S.A.S., Sophia Antipolis, France
| | - Aldert Piersma
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Nynke I. Kramer
- Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, The Netherlands
| |
Collapse
|
3
|
Weng Y, Fonseca KR, Bi YA, Mathialagan S, Riccardi K, Tseng E, Bessire AJ, Cerny MA, Tess DA, Rodrigues AD, Kalgutkar AS, Litchfield JE, Di L, Varma MVS. Transporter-Enzyme Interplay in the Pharmacokinetics of PF-06835919, A First-in-class Ketohexokinase Inhibitor for Metabolic Disorders and Non-alcoholic Fatty Liver Disease. Drug Metab Dispos 2022; 50:DMD-AR-2022-000953. [PMID: 35779864 DOI: 10.1124/dmd.122.000953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Excess dietary fructose consumption promotes metabolic dysfunction thereby increasing the risk of obesity, type 2 diabetes, non-alcoholic steatohepatitis (NASH), and related comorbidities. PF-06835919, a first-in-class ketohexokinase (KHK) inhibitor, showed reversal of such metabolic disorders in preclinical models and clinical studies, and is under clinical development for the potential treatment of NASH. In this study, we evaluated the transport and metabolic pathways of PF-06835919 disposition and assessed pharmacokinetics in preclinical models. PF-06835919 showed active uptake in cultured primary human hepatocytes, and substrate activity to organic anion transporter (OAT)2 and organic anion transporting-polypeptide (OATP)1B1 in transfected cells. "SLC-phenotyping" studies in human hepatocytes suggested contribution of passive uptake, OAT2- and OATP1B-mediated transport to the overall uptake to be about 15%, 60% and 25%, respectively. PF-06835919 showed low intrinsic metabolic clearance in vitro, and was found to be metabolized via both oxidative pathways (58%) and acyl glucuronidation (42%) by CYP3A, CYP2C8, CYP2C9 and UGT2B7. Following intravenous dosing, PF-06835919 showed low clearance (0.4-1.3 mL/min/kg) and volume of distribution (0.17-0.38 L/kg) in rat, dog and monkey. Human oral pharmacokinetics are predicted within 20% error when considering transporter-enzyme interplay in a PBPK model. Finally, unbound liver-to-plasma ratio (Kpuu) measured in vitro using rat, NHP and human hepatocytes was found to be approximately 4, 25 and 10, respectively. Similarly, liver Kpuu in rat and monkey following intravenous dosing of PF-06835919 was found to be 2.5 and 15, respectively, and notably higher than the muscle and brain Kpuu, consistent with the active uptake mechanisms observed in vitro. Significance Statement This work characterizes the transport/metabolic pathways in the hepatic disposition of PF-06835919, a first-in-class KHK inhibitor for the treatment of metabolic disorders and NASH. Phenotyping studies using transfected systems, human hepatocytes and liver microsomes signifies the role of OAT2 and OATP1B1 in the hepatic uptake and multiple enzymes in the metabolism of PF-06835919. Data presented suggest hepatic transporter-enzyme interplay in determining its systemic concentrations and potential enrichment in liver, a target site for KHK inhibition.
Collapse
Affiliation(s)
- Yan Weng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., United States
| | | | | | - Sumathy Mathialagan
- Pharmacokinetics, Pharmacodynamics, and Metabolism, Medicine Design, Pfizer Inc, United States
| | | | - Elaine Tseng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | | | | | | | | | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research and Development, United States
| | | | - Li Di
- Pharmacokintics Dynamics and Metabolism, Pfizer Inc., United States
| | | |
Collapse
|
4
|
Di L, Riccardi K, Tess D. Evolving approaches on measurements and applications of intracellular free drug concentration and Kp uu in drug discovery. Expert Opin Drug Metab Toxicol 2021; 17:733-746. [PMID: 34058926 DOI: 10.1080/17425255.2021.1935866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Intracellular-free drug concentration (Cu,cell) and unbound partition coefficient (Kpuu) are two important parameters to develop pharmacokinetic and pharmacodynamic relationships, predict drug-drug interaction potentials and estimate therapeutic indices.Area covered: Methods on measurements of Cu,cell, Kpuu, partition coefficient (Kp) and fraction unbound of cells (fuc) are discussed. Advantages and limitations of several fuc methods are reviewed. Applications highlighted here are bridging the potency gaps between biochemical and cell-based assays, in vitro hepatocyte assay to predict in vivo liver-to-plasma Kpuu, the role of Kpuu in prediction of hepatic clearance for enzyme- and transporter-mediated mechanisms using extended clearance equation, and structural attributes governing tissue Kpuu.Expert opinion: Cu,cell and Kpuu are of growing applications in drug discovery. Methods for measurements of these properties continue to evolve in order to achieve higher precision/accuracy and obtain more detailed information at the subcellular levels. Future directions of the field include the development of in vitro and in silico models to predict tissue Kpuu, direct measurement of free drug concentration in subcellular organelles, and further investigations into the critical elements governing cell and tissue Kpuu. Significant innovation is needed to advance this complex, but highly impactful and exciting area of science.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA
| | - David Tess
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA
| |
Collapse
|