1
|
Rezhdo A, Hershman RL, Williams SJ, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. ACS Synth Biol 2025; 14:1021-1040. [PMID: 40099723 DOI: 10.1021/acssynbio.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library, called the "Clickable CDR-H3 Library", that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photoreactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multimodal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Rebecca L Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Rezhdo A, Hershman RL, Van Deventer JA. Design, Construction, and Validation of a Yeast-Displayed Chemically Expanded Antibody Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596443. [PMID: 38853888 PMCID: PMC11160716 DOI: 10.1101/2024.05.29.596443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photo-reactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multi-modal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - Rebecca L. Hershman
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
4
|
Lino BR, Van Deventer JA. Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast. Methods Mol Biol 2024; 2760:219-251. [PMID: 38468092 DOI: 10.1007/978-1-0716-3658-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Expanding the genetic code beyond the 20 canonical amino acids enables access to a wide range of chemical functionality that is inaccessible within conventionally biosynthesized proteins. The vast majority of efforts to expand the genetic code have focused on the orthogonal translation systems required to achieve the genetically encoded addition of noncanonical amino acids (ncAAs) into proteins. There remain tremendous opportunities for identifying genetic and genomic factors that enhance ncAA incorporation. Here we describe genome-wide screening strategies to identify factors that enable more efficient addition of ncAAs to biosynthesized proteins. These unbiased screens can reveal previously unknown genes or mutations that can enhance ncAA incorporation and deepen our understanding of the translation apparatus.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, MA, USA
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA, USA.
- Biomedical Engineering Department, Tufts University, Medford, MA, USA.
| |
Collapse
|
5
|
McConnell A, Hackel BJ. Protein engineering via sequence-performance mapping. Cell Syst 2023; 14:656-666. [PMID: 37494931 PMCID: PMC10527434 DOI: 10.1016/j.cels.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Discovery and evolution of new and improved proteins has empowered molecular therapeutics, diagnostics, and industrial biotechnology. Discovery and evolution both require efficient screens and effective libraries, although they differ in their challenges because of the absence or presence, respectively, of an initial protein variant with the desired function. A host of high-throughput technologies-experimental and computational-enable efficient screens to identify performant protein variants. In partnership, an informed search of sequence space is needed to overcome the immensity, sparsity, and complexity of the sequence-performance landscape. Early in the historical trajectory of protein engineering, these elements aligned with distinct approaches to identify the most performant sequence: selection from large, randomized combinatorial libraries versus rational computational design. Substantial advances have now emerged from the synergy of these perspectives. Rational design of combinatorial libraries aids the experimental search of sequence space, and high-throughput, high-integrity experimental data inform computational design. At the core of the collaborative interface, efficient protein characterization (rather than mere selection of optimal variants) maps sequence-performance landscapes. Such quantitative maps elucidate the complex relationships between protein sequence and performance-e.g., binding, catalytic efficiency, biological activity, and developability-thereby advancing fundamental protein science and facilitating protein discovery and evolution.
Collapse
Affiliation(s)
- Adam McConnell
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Alcala-Torano R, Islam M, Cika J, Ho Lam K, Jin R, Ichtchenko K, Shoemaker CB, Van Deventer JA. Yeast Display Enables Identification of Covalent Single-Domain Antibodies against Botulinum Neurotoxin Light Chain A. ACS Chem Biol 2022; 17:3435-3449. [PMID: 36459441 PMCID: PMC10065152 DOI: 10.1021/acschembio.2c00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
While covalent drug discovery is reemerging as an important route to small-molecule therapeutic leads, strategies for the discovery and engineering of protein-based irreversible binding agents remain limited. Here, we describe the use of yeast display in combination with noncanonical amino acids (ncAAs) to identify irreversible variants of single-domain antibodies (sdAbs), also called VHHs and nanobodies, targeting botulinum neurotoxin light chain A (LC/A). Starting from a series of previously described, structurally characterized sdAbs, we evaluated the properties of antibodies substituted with reactive ncAAs capable of forming covalent bonds with nearby groups after UV irradiation (when using 4-azido-l-phenylalanine) or spontaneously (when using O-(2-bromoethyl)-l-tyrosine). Systematic evaluations in yeast display format of more than 40 ncAA-substituted variants revealed numerous clones that retain binding function while gaining either UV-mediated or spontaneous crosslinking capabilities. Solution-based analyses indicate that ncAA-substituted clones exhibit site-dependent target specificity and crosslinking capabilities uniquely conferred by ncAAs. Interestingly, not all ncAA substitution sites resulted in crosslinking events, and our data showed no apparent correlation between detected crosslinking levels and distances between sdAbs and LC/A residues. Our findings highlight the power of yeast display in combination with genetic code expansion in the discovery of binding agents that covalently engage their targets. This platform streamlines the discovery and characterization of antibodies with therapeutically relevant properties that cannot be accessed in the conventional genetic code.
Collapse
Affiliation(s)
- Rafael Alcala-Torano
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Kwok Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, United States of America
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States of America
| |
Collapse
|
7
|
Stieglitz JT, Van Deventer JA. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. ACS Synth Biol 2022; 11:2284-2299. [PMID: 35793554 PMCID: PMC10065163 DOI: 10.1021/acssynbio.1c00626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.
Collapse
Affiliation(s)
- Jessica T Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2491:491-559. [PMID: 35482204 DOI: 10.1007/978-1-0716-2285-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Yeast display has been used to advance many critical research areas, including the discovery of unique protein binders and biological therapeutics. In parallel, noncanonical amino acids (ncAAs) have been used to tailor antibody-drug conjugates and enable discovery of therapeutic leads. Together, these two technologies have allowed for generation of synthetic antibody libraries, where the introduction of ncAAs in yeast-displayed proteins allows for library screening for therapeutically relevant targets. The combination of yeast display with genetically encoded ncAAs increases the available chemistry in proteins and advances applications that require high-throughput strategies. In this chapter, we discuss methods for displaying proteins containing ncAAs on the yeast surface, generating and screening libraries of proteins containing ncAAs, preparing bioconjugates on the yeast surface in large scale, generating and screening libraries of aminoacyl-tRNA synthetases (aaRSs) for encoding ncAAs by using reporter constructs, and characterizing ncAA-containing proteins secreted from yeast. The experimental designs laid out in this chapter are generalizable for discovery of protein binders to a variety of targets and aaRS evolution to continue expanding the genetic code beyond what is currently available in yeast.
Collapse
|