1
|
Bonder MJ, Clark SJ, Krueger F, Luo S, Agostinho de Sousa J, Hashtroud AM, Stubbs TM, Stark AK, Rulands S, Stegle O, Reik W, von Meyenn F. scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood. Nat Commun 2024; 15:7567. [PMID: 39217176 PMCID: PMC11366017 DOI: 10.1038/s41467-024-51833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ageing is the accumulation of changes and decline of function of organisms over time. The concept and biomarkers of biological age have been established, notably DNA methylation-based clocks. The emergence of single-cell DNA methylation profiling methods opens the possibility of studying the biological age of individual cells. Here, we generate a large single-cell DNA methylation and transcriptome dataset from mouse peripheral blood samples, spanning a broad range of ages. The number of genes expressed increases with age, but gene-specific changes are small. We next develop scEpiAge, a single-cell DNA methylation age predictor, which can accurately predict age in (very sparse) publicly available datasets, and also in single cells. DNA methylation age distribution is wider than technically expected, indicating epigenetic age heterogeneity and functional differences. Our work provides a foundation for single-cell and sparse data epigenetic age predictors, validates their functionality and highlights epigenetic heterogeneity during ageing.
Collapse
Affiliation(s)
- Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Stephen J Clark
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | - Felix Krueger
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Siyuan Luo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Aida M Hashtroud
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
- Chronomics Limited, London, UK
| | | | - Steffen Rulands
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wolf Reik
- Altos Labs, Cambridge Institute of Science, Cambridge, UK.
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Department of Medical and Molecular Genetics, King's College London, London, UK.
| |
Collapse
|
2
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|