1
|
Willi B, Brügger L, Müller L, Tabor S, Bender W, Müller M. Molecular and genetic characterization of Cbx-Basel , a new dominant allele of Ultrabithorax in D. melanogaster. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001321. [PMID: 39450185 PMCID: PMC11499937 DOI: 10.17912/micropub.biology.001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Dominant gain-of-function alleles for the homeotic gene Ultrabithorax ( Ubx ) have been known for a long time. They are summarized under the name Contrabithorax ( Cbx ). Such alleles are rather easy to spot because the morphology of the conspicuous dorsal wing appendage is often dramatically changed. The majority of these alleles is associated with chromosomal rearrangements that alter the genetic landscape of the Ultrabithorax locus. Thereby, UBX protein is ectopically expressed in the wing primordium where it is normally absent. Since Ubx specifies haltere identity, wing cells expressing UBX are determined to become haltere cells. However, apart from the prototypic allele Cbx-1 , information on the molecular details of Contrabithorax alleles is scarce. Here, we present a rather detailed account on a novel Cbx-1-like allele called Cbx-Basel . The results of our study corroborate the model that has been postulated for the Cbx-1 wing phenotype.
Collapse
Affiliation(s)
- Basil Willi
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Lukas Brügger
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | - Leandra Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| | | | | | - Martin Müller
- Biozentrum, University of Basel, Basel, Basel-City, Switzerland
| |
Collapse
|
2
|
Zhao Y, Li L, Wei L, Wang Y, Han Z. Advancements and Future Prospects of CRISPR-Cas-Based Population Replacement Strategies in Insect Pest Management. INSECTS 2024; 15:653. [PMID: 39336621 PMCID: PMC11432399 DOI: 10.3390/insects15090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Population replacement refers to the process by which a wild-type population of insect pests is replaced by a population possessing modified traits or abilities. Effective population replacement necessitates a gene drive system capable of spreading desired genes within natural populations, operating under principles akin to super-Mendelian inheritance. Consequently, releasing a small number of genetically edited insects could potentially achieve population control objectives. Currently, several gene drive approaches are under exploration, including the newly adapted CRISPR-Cas genome editing system. Multiple studies are investigating methods to engineer pests that are incapable of causing crop damage or transmitting vector-borne diseases, with several notable successful examples documented. This review summarizes the recent advancements of the CRISPR-Cas system in the realm of population replacement and provides insights into research methodologies, testing protocols, and implementation strategies for gene drive techniques. The review also discusses emerging trends and prospects for establishing genetic tools in pest management.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Longfeng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Liangzi Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yifan Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhilin Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zirin J, Jusiak B, Lopes R, Ewen-Campen B, Bosch JA, Risbeck A, Forman C, Villalta C, Hu Y, Perrimon N. Expanding the Drosophila toolkit for dual control of gene expression. eLife 2024; 12:RP94073. [PMID: 38569007 PMCID: PMC10990484 DOI: 10.7554/elife.94073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.
Collapse
Affiliation(s)
- Jonathan Zirin
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Barbara Jusiak
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Raphael Lopes
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Justin A Bosch
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Corey Forman
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | | | - Yanhui Hu
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
4
|
Berry CW, Fuller MT. Functional septate junctions between cyst cells are required for survival of transit amplifying male germ cells expressing Bag of marbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587826. [PMID: 38617328 PMCID: PMC11014526 DOI: 10.1101/2024.04.02.587826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In adult stem cell lineages, the cellular microenvironment plays essential roles to ensure the proper balance of self-renewal, differentiation and regulated elimination of differentiating cells. Although regulated death of progenitor cells undergoing proliferation or early differentiation is a feature of many tissues, mechanisms that initiate this pruning remain unexplored, particularly in the male germline, where up to 30% of the germline is eliminated before the meiotic divisions. We conducted a targeted screen to identify functional regulators required in somatic support cells for survival or differentiation at early steps in the male germ line stem cell lineage. Cell type-specific knockdown in cyst cells uncovered novel roles of genes in germline stem cell differentiation, including a previously unappreciated role of the Septate Junction (SJ) in preventing cell death of differentiating germline progenitors. Loss of the SJ in the somatic cyst cells resulted in elimination of transit-amplifying spermatogonia by the 8-cell stage. Germ cell death was spared in males mutant for the differentiation factor bam indicating that intact barriers surrounding transit amplifying progenitors are required to ensure germline survival once differentiation has initiated.
Collapse
Affiliation(s)
- Cameron W. Berry
- Department of Developmental Biology, Stanford University School of Medicine, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, USA
- Department of Genetics, Stanford University School of Medicine, USA
| |
Collapse
|
5
|
Zirin J, Jusiak B, Lopes R, Ewen-Campen B, Bosch JA, Risbeck A, Forman C, Villalta C, Hu Y, Perrimon N. Expanding the Drosophila toolkit for dual control of gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553399. [PMID: 37645802 PMCID: PMC10461983 DOI: 10.1101/2023.08.15.553399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA-system or QF-system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterizsed GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue-specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.
Collapse
|
6
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
7
|
Richhariya S, Shin D, Le JQ, Rosbash M. Dissecting neuron-specific functions of circadian genes using modified cell-specific CRISPR approaches. Proc Natl Acad Sci U S A 2023; 120:e2303779120. [PMID: 37428902 PMCID: PMC10629539 DOI: 10.1073/pnas.2303779120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023] Open
Abstract
Circadian behavioral rhythms in Drosophila melanogaster are regulated by about 75 pairs of brain neurons. They all express the core clock genes but have distinct functions and gene expression profiles. To understand the importance of these distinct molecular programs, neuron-specific gene manipulations are essential. Although RNAi based methods are standard to manipulate gene expression in a cell-specific manner, they are often ineffective, especially in assays involving smaller numbers of neurons or weaker Gal4 drivers. We and others recently exploited a neuron-specific CRISPR-based method to mutagenize genes within circadian neurons. Here, we further explore this approach to mutagenize three well-studied clock genes: the transcription factor gene vrille, the photoreceptor gene Cryptochrome (cry), and the neuropeptide gene Pdf (pigment dispersing factor). The CRISPR-based strategy not only reproduced their known phenotypes but also assigned cry function for different light-mediated phenotypes to discrete, different subsets of clock neurons. We further tested two recently published methods for temporal regulation in adult neurons, inducible Cas9 and the auxin-inducible gene expression system. The results were not identical, but both approaches successfully showed that the adult-specific knockout of the neuropeptide Pdf reproduces the canonical loss-of-function mutant phenotypes. In summary, a CRISPR-based strategy is a highly effective, reliable, and general method to temporally manipulate gene function in specific adult neurons.
Collapse
|