1
|
Graber EG, Hosseini SMH, Wilson DM, Rogol AD. The Unfolding Story of Protein Misfolding Causing Alzheimer Disease in Recipients of Human Pituitary Growth Hormone. J Endocr Soc 2025; 9:bvaf029. [PMID: 40012910 PMCID: PMC11860808 DOI: 10.1210/jendso/bvaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 02/28/2025] Open
Abstract
Human growth hormone (hGH) has been in clinical use for children with GH deficiency (GHD) since the late 1950s. The original formulations were considered very safe with few adverse events reported. That changed remarkably in 1985 when the first patients with GHD, who had been treated with cadaveric hGH, were diagnosed with Creutzfeldt-Jakob disease (CJD). Fortunately, that same year a robust supply of recombinant hGH was released to the market whose adverse event profile did not include CJD. Patients who had received National Hormone and Pituitary Program hGH have been continuously followed since 1985. It is clear that prions are causative for CJD. Within the last 10 years there have been reports that similar preparations of cadaveric hGH may have been contaminated with amyloid β (Aβ) protein, a material that is related to Alzheimer disease. Eight patients in the United Kingdom, who had received cadaveric hGH extracted in an analogous manner to that in the United States, had conditions compatible with Alzheimer disease, although they did not fulfill all of the requirements for that diagnosis. In this report we discuss the findings of both CJD and Alzheimer disease, especially as they relate to a possible transmission of the diseases by prions and Aβ protein.
Collapse
Affiliation(s)
- Evan G Graber
- Division of Endocrinology, Department of Pediatrics Nemours Children's Health, Wilmington, DL 19803, USA, and Sidney Kimmel Medical College, Philadelphia, PA 19107, USA
| | - Sayed M Hadi Hosseini
- Computational Brain Research and Intervention (C-Brain) Laboratory, Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, CA 94304, USA
| | - Darrell M Wilson
- Division of Endocrinology and Diabetes, Department of Pediatrics, Stanford University, Palo Alto, CA 94304, USA
| | - Alan D Rogol
- Division of Diabetes and Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Mushtaq U, Ganai RA, Ahmad M, Khanday FA. Amyloid beta-activated alpha-1-syntrophin has ramifications on Rac1 activation, ROS production and neuronal cell death. Eur J Neurosci 2024. [PMID: 39543939 DOI: 10.1111/ejn.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of β-amyloid (Aβ)-containing extracellular neuritic plaques and phosphorylated tau-containing intracellular neurofibrillary tangles. It remains the primary neuropathological criteria for the diagnosis of AD. Additionally, several other processes are currently being recognized as significant risk factors for AD development, including the brain's susceptibility to reactive oxygen species (ROS). The ROS production is among the early signs in the progression of AD. However, the underlying mechanisms behind increased ROS production in AD remain poorly understood. We have observed SNTA1 plays critical role in regulating ROS levels in different pathological conditions. Here, we wanted to gain further insight into the role of SNTA1 in the development of AD by using IMR32 cell line. Our results show that the accumulation of Aβ plaques in Alzheimer's model neuroblastoma cells significantly increases the expression and activation of SNTA1 and MKK6 kinase. The activation of MKK6 results in the phosphorylation of SNTA1, creating a binding site for Rac1, leading to its activation and subsequent production of ROS. Excessive ROS production leads to cell cycle arrest in the G2/M phase, a hallmark of AD. Our study provides new insight into the mechanism of Aβ-mediated cell death in AD and suggests that MKK6-mediated activation of alpha-1-syntrophin promotes ROS production in neuronal cells, resulting in cell death. This study presents a mechanistic insight into Aβ-mediated cell death and could serve as a paradigm for reducing neuronal cell death in AD.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Rais A Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Jammu and Kashmir, Awantipora, India
| | - Muzamil Ahmad
- Neuropharmacology Laboratory, Indian Institute of Integrative Medicine-CSIR, Srinagar, Sanat Nagar, India
| | - Firdous Ahmad Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Raine J, Tolwinski N, Gruber J, Mathuru AS. Evaluating the inter-species transmission risk of amyloid beta peptide aggregates via ingestion. Alzheimers Res Ther 2024; 16:123. [PMID: 38849926 PMCID: PMC11157902 DOI: 10.1186/s13195-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Recent reports suggest that amyloid beta (Aβ) peptides can exhibit prion-like pathogenic properties. Transmission of Aβ peptide and the development of associated pathologies after surgeries with contaminated instruments and intravenous or intracerebral inoculations have now been reported across fish, rodents, primates, and humans. This raises a worrying prospect of Aβ peptides also having other characteristics typical of prions, such as evasion of the digestive process. We asked if such transmission of Aβ aggregates via ingestion was possible. METHODS We made use of a transgenic Drosophila melanogaster line expressing human Aβ peptide prone to aggregation. Fly larvae were fed to adult zebrafish under two feeding schemes. The first was a short-term, high-intensity scheme over 48 h to determine transmission and retention in the gut. The second, long-term scheme specifically examined retention and accumulation in the brain. The gut and brain tissues were examined by histology, western blotting, and mass spectrometric analyses. RESULTS None of the analyses could detect Aβ aggregates in the guts of zebrafish following ingestion, despite being easily detectable in the feed. Additionally, there was no detectable accumulation of Aβ in the brain tissue or development of associated pathologies after prolonged feeding. CONCLUSIONS While human Aβ aggregates do not appear to be readily transmissible by ingestion across species, two prospects remain open. First, this mode of transmission, if occurring, may stay below a detectable threshold and may take much longer to manifest. A second possibility is that the human Aβ peptide is not able to trigger self-propagation or aggregation in other species. Either possibility requires further investigation, taking into account the possibility of such transmission from agricultural species used in the food industry.
Collapse
Affiliation(s)
- Joshua Raine
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Tolwinski
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jan Gruber
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, 12 College Avenue West, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Digital Medicine (WisDM) Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
| |
Collapse
|
4
|
Ransom LS, Liu CS, Dunsmore E, Palmer CR, Nicodemus J, Ziomek D, Williams N, Chun J. Human brain small extracellular vesicles contain selectively packaged, full-length mRNA. Cell Rep 2024; 43:114061. [PMID: 38578831 DOI: 10.1016/j.celrep.2024.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.
Collapse
Affiliation(s)
- Linnea S Ransom
- Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christine S Liu
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emily Dunsmore
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Carter R Palmer
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliet Nicodemus
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derya Ziomek
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nyssa Williams
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jerold Chun
- Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
6
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Li Z, Liu J. Thyroid dysfunction and Alzheimer's disease, a vicious circle. Front Endocrinol (Lausanne) 2024; 15:1354372. [PMID: 38419953 PMCID: PMC10899337 DOI: 10.3389/fendo.2024.1354372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Recently, research into the link between thyroid dysfunction and Alzheimer's disease (AD) remains a current topic of interest. Previous research has primarily concentrated on examining the impact of thyroid dysfunction on the risk of developing AD, or solely explored the mechanisms of interaction between hypothyroidism and AD, a comprehensive analysis of the mechanisms linking thyroid dysfunction, including hyperthyroidism and hypothyroidism, to Alzheimer's disease (AD) still require further elucidation. Therefore, the aim of this review is to offer a thorough and comprehensive explanation of the potential mechanisms underlying the causal relationship between thyroid dysfunction and AD, highlighting the existence of a vicious circle. The effect of thyroid dysfunction on AD includes neuron death, impaired synaptic plasticity and memory, misfolded protein deposition, oxidative stress, and diffuse and global neurochemical disturbances. Conversely, AD can also contribute to thyroid dysfunction by affecting the stress repair response and disrupting pathways involved in thyroid hormone (TH) production, transport, and activation. Furthermore, this review briefly discusses the role and significance of utilizing the thyroid as a therapeutic target for cognitive recovery in AD. By exploring potential mechanisms and therapeutic avenues, this research contributes to our understanding and management of this devastating neurodegenerative disease.
Collapse
Affiliation(s)
| | - Jia Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Mushtaq U. EP1 receptor: Devil in emperors coat. J Cell Biochem 2023; 124:1105-1114. [PMID: 37450673 DOI: 10.1002/jcb.30436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
EP1 receptor belongs to prostanoid receptors and is activated by prostaglandin E2. The receptor performs contrasting functions in central nervous system (CNS) and other tissues. Although the receptor is neurotoxic and proapoptotic in CNS, it has also been reported to act in an antiapoptotic manner by modulating cell survival, proliferation, invasion, and migration in different types of cancers. The receptor mediates its neurotoxic effects by increasing cytosolic Ca2+ levels, leading to the activation of its downstream target, protein kinase C, in different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and epilepsy. Antagonists ONO-8713, SC51089, and SC51322 against EP1 receptor ameliorate the neurotoxic effect by attenuating the neuroinflammation. The receptor also shows increased expression in different types of cancers and has been found to activate different signaling pathways, which lead to the development, progression, and metastasis of different cancers. The receptor stimulates the cell survival pathway by phosphorylating the AKT and PTEN (phosphatase and tensin homolog deleted on chromosome 10) signaling pathways. Although there are limited studies about this receptor and not a single clinical trial has been targeting the EP1 receptor for different neurological disorders or cancer, the receptor is appearing as a potential candidate for therapeutic targets. The aim of this article is to review the recent progress in understanding the pathogenic roles of EP1 receptors in different pathological conditions.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
9
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|