1
|
Zheng L, Du Y, Zhang L, Jin F, Li W, Zhou X, Yin Y, Weng Y, Xu D, Wang J. Enhanced therapeutic effects of all-trans retinoic acid nanostructured lipid carrier composite gel drug delivery system for alopecia areata. J Nanobiotechnology 2025; 23:351. [PMID: 40380336 PMCID: PMC12083027 DOI: 10.1186/s12951-025-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/19/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Alopecia areata (AA) affects approximately 2% of the global population and causes psychological distress. All-trans retinoic acid (ATRA) has the potential to promote hair regeneration; however, its clinical use is limited by skin irritation and low targeting specificity. To address these limitations, we designed an ATRA-loaded nanostructured lipid carrier gel (ATRA-NLC-Gel) drug delivery system to enhance the therapeutic effects of ATRA in AA. RESULTS ATRA-NLC showed a uniform nanoparticle size distribution and excellent biocompatibility. In vitro, they enhanced the uptake ability of dermal papilla cells, increased cell viability, and promoted cell proliferation by facilitating the cell cycle process. Compared to ATRA cream, ATRA-NLC-Gel significantly reduced skin irritation, prolonged residence time on the skin, and achieved a sustained and slow release of ATRA. Treatment with ATRA-NLC-Gel enhanced transdermal penetration and targeted enrichment in the hair follicle region, thereby significantly promoting hair regrowth. ATRA-NLC-Gel improved AA symptoms by upregulating CD200 and Ki-67 expression, activating the Wnt/β-catenin pathway. CONCLUSIONS ATRA-NLC-Gel enhanced the transdermal permeability and follicle-targeting efficacy of ATRA, alleviated ATRA-induced skin dryness and irritation, and effectively improved the symptoms of AA in AA model mice. ATRA-NLC-Gel offers a highly promising strategy for transdermal treatment of AA in clinical setting.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Yang Du
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Lulu Zhang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Fuxing Jin
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wangting Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xuan Zhou
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yanping Yin
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Huang Z, Li L, Zhang B, Yao D, Xiao B, Mo B. Investigation of the mechanistic impact of CBL0137 on airway remodeling in asthma. BMC Pulm Med 2025; 25:129. [PMID: 40114084 PMCID: PMC11927260 DOI: 10.1186/s12890-025-03596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Bronchial asthma, a chronic inflammatory airway disease, is characterized by airway remodeling, including thickening of the airway smooth muscle layer, primarily due to abnormal proliferation of airway smooth muscle cells (ASMCs). CBL0137 (Curaxin-137 hydrochloride), a histone chaperone facilitate chromatin transcription (FACT) inhibitor, has demonstrated anti-tumor properties, including inhibition of proliferation, promotion of apoptosis, and increased autophagy. However, its effects on ASMCs and airway remodeling remain unexplored. METHODS Asthma models were established using ovalbumin (OVA) in female C57BL/6 J mice, with therapeutic interventions using CBL0137 and budesonide. Lung tissues were analyzed using Hematoxylin and eosin (H&E), PAS, Masson's trichrome, and α-SMA immunofluorescence staining. ASMCs extracted from Sprague-Dawley rats were cultured in vitro experiments, with phenotypic changes assessed via flow cytometry. Gene and protein expressions were analyzed using RT-PCR and Western blotting. RESULTS CBL0137 significantly reduced airway resistance, goblet cell proliferation, alveolar collagen deposition, and airway smooth muscle layer thickening in asthmatic mice. In vitro, CBL0137 inhibited ASMC proliferation and induced apoptosis, downregulating cyclin-B1, Cdc2, and Bcl-2 while upregulating caspase-3. CONCLUSIONS CBL0137 mitigates airway remodeling of asthmatic mice by modulating ASMC proliferation and apoptosis, presenting a potential therapeutic strategy for asthma treatment.
Collapse
Affiliation(s)
- Zhiheng Huang
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, 545005, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541000, China
| | - Bingxi Zhang
- Department of Pulmonary and Critical Care Medicine, The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Dong Yao
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, the Key Laboratory of Respiratory Diseases,Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541001, China.
| | - Bo Xiao
- Department of Pulmonary and Critical Care Medicine, The Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
- Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, the Key Laboratory of Respiratory Diseases,Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
3
|
Hayatigolkhatmi K, Soriani C, Soda E, Ceccacci E, El Menna O, Peri S, Negrelli I, Bertolini G, Franchi GM, Carbone R, Minucci S, Rodighiero S. Automated workflow for the cell cycle analysis of (non-)adherent cells using a machine learning approach. eLife 2024; 13:RP94689. [PMID: 39576677 PMCID: PMC11584176 DOI: 10.7554/elife.94689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.
Collapse
Affiliation(s)
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Emanuel Soda
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Elena Ceccacci
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Oualid El Menna
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | - Sebastiano Peri
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| | | | | | | | | | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
- Department of Oncology and Hemato-Oncology, University of MilanMilanItaly
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology-IRCCSMilanItaly
| |
Collapse
|
4
|
Chen YL, Chen YC, Suzuki A. ImmunoCellCycle-ID - a high-precision immunofluorescence-based method for cell cycle identification. J Cell Sci 2024; 137:jcs263414. [PMID: 39564775 DOI: 10.1242/jcs.263414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
The cell cycle is a fundamental process essential for cell proliferation, differentiation and development. It consists of four major phases: G1, S, G2 and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play crucial roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early/mid S, late S, early/mid G2, late G2, and each sub-stage of the M phase using fluorescence microscopy called ImmunoCellCycle-ID. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed sub-stages of the cell cycle in a variety of cell lines.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| |
Collapse
|
5
|
Shi JJ, Liu YJ, Liu ZG, Chen RY, Wang R, Yu J, Li CY, Yang GJ, Chen J. Structure-Based identification of a potent KDM7A inhibitor exerts anticancer activity through transcriptionally reducing MKRN1 in taxol- resistant and -sensitive triple-negative breast cancer cells. Bioorg Chem 2024; 153:107945. [PMID: 39509788 DOI: 10.1016/j.bioorg.2024.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
KDM7A, a histone demethylase implicated in cancer proliferation, metastasis, and drug resistance, represents a crucial therapeutic target. Utilizing "mcule.com" for virtual screening of 100,000 compounds from the ZINC database, we identified 12 compounds with high affinity for KDM7A, with compound 4 emerging as the leading candidate for effectively inhibiting KDM7A's demethylase activity. Analysis of the GTRD database, the Breast Cancer Gene Expression Miner website, and recent studies highlighted MKRN1, a gene associated with cell proliferation and drug resistance, as a key intersecting factor. Compared to 2,4-pyridine dicarboxylic acid, compound 4 significantly reduced breast cancer stem cells and induced G1 phase cell cycle arrest. Mechanistically, compound 4 inhibited KDM7A's binding to H3K27me3, decreased MKRN1 transcription, and increased the levels of cell cycle regulators p16, p21, and p27, while reducing stem cell markers ALDH1A1, CD44, and CD133. These findings suggest that compound 4 could serve as a promising lead for selective KDM7A-targeting drugs. Additionally, this study is the first to demonstrate MKRN1 as a downstream gene of KDM7A, showing significant inhibitory effects in both taxol-resistant and drug-sensitive triple-negative breast cancer (TNBC) cells. This research offers new insights into the anticancer mechanisms of KDM7A inhibitors and underscores KDM7A's potential as a therapeutic target against TNBC.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Zhi-Guo Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
Bejarano Franco M, Boujataoui S, Hadji M, Hammer L, Ulrich HD, Reuter LM. Analysis of cell cycle stage, replicated DNA, and chromatin-associated proteins using high-throughput flow cytometry. Biol Chem 2024:hsz-2024-0058. [PMID: 39241223 DOI: 10.1515/hsz-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024]
Abstract
Flow cytometry is a versatile tool used for cell sorting, DNA content imaging, and determining various cellular characteristics. With the possibility of high-throughput analyses, it combines convenient labelling techniques to serve rapid, quantitative, and qualitative workflows. The ease of sample preparation and the broad range of applications render flow cytometry a preferred approach for many scientific questions. Yet, we lack practical adaptations to fully harness the quantitative and high-throughput capabilities of most cytometers for many organisms. Here, we present simple and advanced protocols for the analysis of total DNA content, de novo DNA synthesis, and protein association to chromatin in budding yeast and human cells. Upon optimization of experimental conditions and choice of fluorescent dyes, up to four parameters can be measured simultaneously and quantitatively for each cell of a population in a multi-well plate format. Reducing sample numbers, plastic waste, costs per well, and hands-on time without compromising signal quality or single-cell accuracy are the main advantages of the presented protocols. In proof-of-principle experiments, we show that DNA content increase in S-phase correlates with de novo DNA synthesis and can be predicted by the presence of the replicative helicase MCM2-7 on genomic DNA.
Collapse
Affiliation(s)
| | - Safia Boujataoui
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Majd Hadji
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Louis Hammer
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - L Maximilian Reuter
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
7
|
Chen YL, Chen YC, Suzuki A. ImmunoCellCycle-ID: A high-precision immunofluorescence-based method for cell cycle identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607961. [PMID: 39185179 PMCID: PMC11343203 DOI: 10.1101/2024.08.14.607961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The cell cycle is a fundamental process essential for cell proliferation, differentiation, and development. It consists of four major phases: G1, S, G2, and M. These phases collectively drive the reproductive cycle and are meticulously regulated by various proteins that play critical roles in both the prevention and progression of cancer. Traditional methods for studying these functions, such as flow cytometry, require a substantial number of cells to ensure accuracy. In this study, we have developed a user-friendly, immunofluorescence-based method for identifying cell cycle stages, providing single-cell resolution and precise identification of G1, early S, late S, early G2, late G2, and each sub-stage of the M phase using fluorescence microscopy. This method provides high-precision cell cycle identification and can serve as an alternative to, or in combination with, traditional flow cytometry to dissect detailed substages of the cell cycle in a variety of cell lines.
Collapse
Affiliation(s)
- Yu-Lin Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Jiang L, Zhang Z, Luo Z, Li L, Yuan S, Cui M, He K, Xiao J. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed Pharmacother 2024; 176:116826. [PMID: 38838507 DOI: 10.1016/j.biopha.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3β pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhibo Zhang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhaofeng Luo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shengtao Yuan
- China Pharmaceutical University, Nanjing 210000, China
| | - Min Cui
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
9
|
Wu TH, Lin TY, Yang PM, Li WT, Yeh CT, Pan TL. Scutellaria baicalensis Induces Cell Apoptosis and Elicits Mesenchymal-Epithelial Transition to Alleviate Metastatic Hepatocellular Carcinoma via Modulating HSP90β. Int J Mol Sci 2024; 25:3073. [PMID: 38474318 DOI: 10.3390/ijms25053073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma is one of the most common malignant tumors in the world and shows strong metastatic potential. Current medicine for hepatocellular carcinoma therapy is invalid, while Scutellaria baicalensis Georgi exhibits the pharmaceutical potential to treat liver diseases and liver cancer. Herein, we verified the inhibitory properties and the pivotal molecules regimented by Scutellaria baicalensis on advanced hepatocellular carcinoma. At first, the viability of SK-Hep-1 cells was significantly reduced under treatment of Scutellaria baicalensis extract in a dose-dependent manner without affecting the growth of normal hepatocyte. Scutellaria baicalensis extract application could remarkably cause apoptosis of SK-Hep-1 cells through p53/cytochrome C/poly-ADP ribose polymerase cascades and arrest the cell cycle at the G1/S phase by downregulating cyclin-dependent kinases. Meanwhile, administration of Scutellaria baicalensis extract remarkably attenuated the migration capability as well as suppressed matrix metalloproteinase activity of advanced hepatocellular carcinoma cells. The proteome profiles and network analysis particularly implied that exposure to Scutellaria baicalensis extract downregulated the expression of HSP90β, and the clinical stage of hepatocellular carcinoma is also positively correlated with the HSP90β level. Combined treatment of Scutellaria baicalensis extract and HSP90β siRNAs could markedly enhance the ubiquitination activity and the degradation of vimentin to subsequently inhibit the metastatic property of SK-Hep-1 cells. Moreover, application of Scutellaria baicalensis extract and HSP90β siRNAs depleted phosphorylation of AKT, which stimulated the expression of p53 and consecutively triggered cell apoptosis. These findings suggest that HSP90β may be a prospective target for the effective therapy of advanced hepatocellular carcinoma via accelerating apoptosis of hepatocellular carcinoma cells and eliciting mesenchymal-epithelial transition with the administration of Scutellaria baicalensis extract.
Collapse
Affiliation(s)
- Tung-Ho Wu
- Surgical Critical Care Division of Cardiovascular Surgical Department, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Tung-Yi Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung 204, Taiwan
| | - Pei-Ming Yang
- TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tai-Long Pan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Food and Cosmetic Safety and Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Zhang M, Lai J, Wu Q, Lai J, Su J, Zhu B, Li Y. Naringenin Induces HepG2 Cell Apoptosis via ROS-Mediated JAK-2/STAT-3 Signaling Pathways. Molecules 2023; 28:molecules28114506. [PMID: 37298981 DOI: 10.3390/molecules28114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative stress in naringenin-induced cytotoxicity in HepG2 cells remain elusive. Based on the above, the present study examined the effect of naringenin on the cytotoxic and anticancer mechanisms of HepG2 cells. Naringenin-induced HepG2 cell apoptosis was confirmed via the accumulation of the sub-G1 cell population, phosphatidylserine exposure, mitochondrial transmembrane potential loss, DNA fragmentation, caspase-3 activation, and caspase-9 activation. Furthermore, naringenin enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of JAK-2/STAT-3 were inhibited, and caspase-3 was activated to advance cell apoptosis. These results suggest that naringenin plays an important role in inducing apoptosis in HepG2 cells and that naringenin may be a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jianmei Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Qianlong Wu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|