1
|
Arias-Gaguancela O, Palii C, Nissa MU, Brand M, Ranish J. QuickProt: A bioinformatics and visualization tool for DIA and PRM mass spectrometry-based proteomics datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645047. [PMID: 40196523 PMCID: PMC11974799 DOI: 10.1101/2025.03.24.645047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mass spectrometry (MS)-based proteomics focuses on identifying and quantifying peptides and proteins in biological samples. Processing of MS-derived raw data, including deconvolution, alignment, and peptide-protein prediction, has been achieved through various software platforms. However, the downstream analysis, including quality control, visualizations, and interpretation of proteomics results remains challenging due to the lack of integrated tools to facilitate the analyses. To address this challenge, we developed QuickProt, a series of Python-based Google Colab notebooks for analyzing data-independent acquisition (DIA) and parallel reaction monitoring (PRM) proteomics datasets. These pipelines are designed so that users with no coding expertise can utilize the tool. Furthermore, as open-source code, QuickProt notebooks can be customized and incorporated into existing workflows. As proof of concept, we applied QuickProt to analyze in-house DIA and stable isotope dilution (SID)-PRM MS proteomics datasets from a time-course study of human erythropoiesis. The analysis resulted in annotated tables and publication-ready figures revealing a dynamic rearrangement of the proteome during erythroid differentiation, with the abundance of proteins linked to gene regulation, metabolic, and chromatin remodeling pathways increasing early in erythropoiesis. Altogether, these tools aim to automate and streamline DIA and PRM-MS proteomics data analysis, making it more efficient and less time-consuming.
Collapse
Affiliation(s)
| | - Carmen Palii
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA, USA
| |
Collapse
|
2
|
Hao MJ, Cheng ZY, Gao Y, Xin L, Yu CT, Wang TL, Li ZS, Wang LW. Liquid biopsy of oesophageal squamous cell carcinoma: implications in diagnosis, prognosis, and treatment monitoring. Scand J Gastroenterol 2024; 59:698-709. [PMID: 38466190 DOI: 10.1080/00365521.2024.2310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is a common malignant tumour of the gastrointestinal tract. Early detection and access to appropriate treatment are crucial for the long-term survival of patients. However, limited diagnostic and monitoring methods are available for identifying early stage ESCC. Endoscopic screening and surgical resection are commonly used to diagnose and treat early ESCC. However, these methods have disadvantages, such as high recurrence, lethality, and mortality rates. Therefore, methods to improve early diagnosis of ESCC and reduce its mortality rate are urgently required. In 1961, Gary et al. proposed a novel liquid biopsy approach for clinical diagnosis. This involved examining exosomes, circulating tumour cells, circulating free DNA, and circulating free RNA in body fluids. The ability of liquid biopsy to obtain samples repeatedly, wide detection range, and fast detection speed make it a feasible option for non-invasive tumour detection. In clinical practice, liquid biopsy technology has gained popularity for early screening, diagnosis, treatment efficacy monitoring, and prognosis assessment. Thus, this is a highly promising examination method. However, there have been no comprehensive reviews on the four factors of liquid biopsy in the context of ESCC. This review aimed to analyse the progress of liquid biopsy research for ESCC, including its classification, components, and potential future applications.
Collapse
Affiliation(s)
- Mei-Juan Hao
- University of Shanghai for Science and Technology, Shanghai, China
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Anaesthesia and Surgery, Guiyang Fourth People's Hospital, Guiyang, China
| | - Zhi-Yuan Cheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Xin
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chu-Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ting-Lu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Luo-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Babu E, Sen S. Explore & actuate: the future of personalized medicine in oncology through emerging technologies. Curr Opin Oncol 2024; 36:93-101. [PMID: 38441149 DOI: 10.1097/cco.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW The future of medicine is aimed to equip the physician with tools to assess the individual health of the patient for the uniqueness of the disease that separates it from the rest. The integration of omics technologies into clinical practice, reviewed here, would open new avenues for addressing the spatial and temporal heterogeneity of cancer. The rising cancer burden patiently awaits the advent of such an approach to personalized medicine for routine clinical settings. RECENT FINDINGS To weigh the translational potential, multiple technologies were categorized based on the extractable information from the different types of samples used, to the various omic-levels of molecular information that each technology has been able to advance over the last 2 years. This review uses a multifaceted classification that helps to assess translational potential in a meaningful way toward clinical adaptation. SUMMARY The importance of distinguishing technologies based on the flow of information from exploration to actuation puts forth a framework that allows the clinicians to better adapt a chosen technology or use them in combination to enhance their goals toward personalized medicine.
Collapse
Affiliation(s)
- Erald Babu
- UM-DAE Centre for Excellence in Basic Sciences, School of Biological Sciences, University of Mumbai, Kalina Campus, Mumbai, Maharashtra, India
| | | |
Collapse
|
4
|
Lattmann E, Räss L, Tognetti M, Gómez JMM, Lapaire V, Bruderer R, Reiter L, Feng Y, Steinmetz LM, Levesque MP. Size-exclusion chromatography combined with DIA-MS enables deep proteome profiling of extracellular vesicles from melanoma plasma and serum. Cell Mol Life Sci 2024; 81:90. [PMID: 38353833 PMCID: PMC10867102 DOI: 10.1007/s00018-024-05137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Luca Räss
- Biognosys AG, Schlieren, Switzerland
| | | | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Valérie Lapaire
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | | | | | | | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|