1
|
Nemoto M, Ando W, Mano T, Lee M, Yuzawa S, Mizuno T. Identification of Key Amino Acids in the A Domains of Polymyxin Synthetase Responsible for 2,4-Diaminobutyric Acid Adenylation in Paenibacillus polymyxa NBRC3020 Strain. ACS Chem Biol 2025; 20:321-331. [PMID: 39818748 DOI: 10.1021/acschembio.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by Paenibacillus polymyxa NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from S. celluloflavus USE31 and pddA from S. hindustanus NBRC15115), which remain exceedingly rare. The polymyxin synthetase in NBRC3020 contains five A domains specific to l-Dab, distributed across five distinct modules (modules 1, 3, 4, 5, 8, and 9). In this study, we successfully obtained soluble A domain proteins from modules 1, 5, 8, and 9 by preparing module-specific recombinant proteins. These proteins were expressed in E. coli BAP-1, purified via Ni-affinity chromatography, and demonstrated high specificity for l-Dab. Through sequence homology analysis, three-dimensional structural modeling, docking simulations to estimate substrate-binding sites, and functional validation using alanine mutants, we identified Glu281 and Asp344 as critical residues for recognizing the side chain amino group of l-Dab, and Asp238 as essential for recognizing its main chain amino group in the A domain. Notably, these key residues were conserved not only across the A domains in modules 1, 5, 8, and 9 of P. polymyxa NBRC3020 but also in those of the P. polymyxa PKB1 strain, as confirmed by sequence homology analysis. Interestingly, in pldA and pddA, the key residues involved in recognizing the side-chain amino group of l-Dab, which are conserved among polymyxin synthetases of NBRC3020 and PKB1 strain, were not observed. This suggests a potentially different mechanism for l-Dab recognition.
Collapse
Affiliation(s)
- Mai Nemoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Wataru Ando
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Taichi Mano
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Minjae Lee
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Satoshi Yuzawa
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
2
|
Hashimoto T, Suenaga H, Shin-Ya K. Application of Cas9-Based Gene Editing to Engineering of Nonribosomal Peptide Synthetases. Chembiochem 2025; 26:e202400765. [PMID: 39741118 DOI: 10.1002/cbic.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/02/2025]
Abstract
Engineering of nonribosomal peptide synthetases (NRPSs) could transform the production of bioactive natural product derivatives. A number of recent reports have described the engineering of NRPSs without marked reductions in yield. Comparative analysis of evolutionarily related NRPSs can provide insights regarding permissive fusion sites for engineering where recombination may occur during evolutionary processes. Studies involving engineering of NRPSs using these recombination sites showed that they have great potential. Moreover, we highlight recent advances in engineering of NRPSs using CRISPR-associated protein 9 (Cas9)-based gene editing technology. The use of Cas9 facilitates the editing of even larger biosynthetic gene clusters (BGCs) close to or over 100 kb in size by precisely targeting and digesting DNA sequences at specific sites. This technology combined with growing understanding of potential fusion sites from large-scale informatics analyses will accelerate the scalable exploration of engineered NRPS assembly lines to obtain bioactive natural product derivatives in high yields.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hikaru Suenaga
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Kazuo Shin-Ya
- Department Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
3
|
Yin M, Xie L, Chen K, Zhang L, Yue Q, Wang C, Zeng J, Hao X, Gu X, Molnár I, Xu Y. Re-Engineering Fungal Nonribosomal Peptide Synthetases by Module Dissection and Duplicated Thiolation Domains. Angew Chem Int Ed Engl 2024; 63:e202406360. [PMID: 38822735 DOI: 10.1002/anie.202406360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Unnatural product (uNP) nonribosomal peptides promise to be a valuable source of pharmacophores for drug discovery. However, the extremely large size and complexity of the nonribosomal peptide synthetase (NRPS) enzymes pose formidable challenges to the production of such uNPs by combinatorial biosynthesis and synthetic biology. Here we report a new NRPS dissection strategy that facilitates the engineering and heterologous production of these NRPSs. This strategy divides NRPSs into "splitting units", each forming an enzyme subunit that contains catalytically independent modules. Functional collaboration between the subunits is then facilitated by artificially duplicating, at the N-terminus of the downstream subunit, the linker - thiolation domain - linker fragment that is resident at the C-terminus of the upstream subunit. Using the suggested split site that follows a conserved motif in the linker connecting the adenylation and the thiolation domains allows cognate or chimeric splitting unit pairs to achieve productivities that match, and in many cases surpass those of hybrid chimeric enzymes, and even those of intact NRPSs, upon production in a heterologous chassis. Our strategy provides facile options for the rational engineering of fungal NRPSs and for the combinatorial reprogramming of nonribosomal peptide production.
Collapse
Affiliation(s)
- Miaomiao Yin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Linan Xie
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Kang Chen
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Liwen Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Qun Yue
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Chen Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| | - Juntian Zeng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Xiaoyang Hao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - Xiaofeng Gu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
| | - István Molnár
- VTT Technical Research Centre of Finland, Espoo, 02150, Finland
| | - Yuquan Xu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, P.R. China
- Zhongyuan Research Center, The Chinese Academy of Agricultural Sciences, Xinxiang, 453000, P.R. China
| |
Collapse
|
4
|
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar Drugs 2024; 22:349. [PMID: 39195464 DOI: 10.3390/md22080349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zijing Peng
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| |
Collapse
|
5
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Messenger SR, McGuinniety EMR, Stevenson LJ, Owen JG, Challis GL, Ackerley DF, Calcott MJ. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat Chem Biol 2024; 20:251-260. [PMID: 37996631 DOI: 10.1038/s41589-023-01485-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.
Collapse
Affiliation(s)
- Sarah R Messenger
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Edward M R McGuinniety
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|