1
|
Sander S, Leytens A, Dengjel J. Deep Proteome Profiling of Primary Skin Fibroblasts. Methods Mol Biol 2025; 2922:197-207. [PMID: 40208537 DOI: 10.1007/978-1-0716-4510-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Skin-derived primary cells and skin tissue are prime model systems to study molecular disease mechanisms on cell and tissue level. Cells and tissue can be cultivated ex vivo and protocols for both, simple 2D as well as 3D in vitro cultures reflecting different levels of complexity exist. Mass spectrometry (MS)-based proteomics is a prime approach to link molecular mechanisms to observable disease phenotypes. In this chapter, we describe in detail the analysis of 2D and 3D primary skin fibroblast cultures by MS. We focus on automated sample processing to increase throughput and usage of limited cell numbers to reduce costs. The described workflow supports the study of proteome regulation in large scale screening approaches, be it for drug discovery or in clinical studies.
Collapse
Affiliation(s)
- Sibilla Sander
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Topitsch A, Halstenbach T, Rothweiler R, Fretwurst T, Nelson K, Schilling O. Mass Spectrometry-Based Proteomics of Poly(methylmethacrylate)-Embedded Bone. J Proteome Res 2024; 23:1810-1820. [PMID: 38634750 DOI: 10.1021/acs.jproteome.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely employed technique in proteomics research for studying the proteome biology of various clinical samples. Hard tissues, such as bone and teeth, are routinely preserved using synthetic poly(methyl methacrylate) (PMMA) embedding resins that enable histological, immunohistochemical, and morphological examination. However, the suitability of PMMA-embedded hard tissues for large-scale proteomic analysis remained unexplored. This study is the first to report on the feasibility of PMMA-embedded bone samples for LC-MS/MS analysis. Conventional workflows yielded merely limited coverage of the bone proteome. Using advanced strategies of prefractionation by high-pH reversed-phase liquid chromatography in combination with isobaric tandem mass tag labeling resulted in proteome coverage exceeding 1000 protein identifications. The quantitative comparison with cryopreserved samples revealed that each sample preparation workflow had a distinct impact on the proteomic profile. However, workflow replicates exhibited a high reproducibility for PMMA-embedded samples. Our findings further demonstrate that decalcification prior to protein extraction, along with the analysis of solubilization fractions, is not preferred for PMMA-embedded bone. The biological applicability of the proposed workflow was demonstrated using samples of human PMMA-embedded alveolar bone and the iliac crest, which revealed anatomical site-specific proteomic profiles. Overall, these results establish a crucial foundation for large-scale proteomics studies contributing to our knowledge of bone biology.
Collapse
Affiliation(s)
- Annika Topitsch
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Department of Oral and Maxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Tim Halstenbach
- Department of Oral and Maxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - René Rothweiler
- Department of Oral and Maxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral and Maxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Katja Nelson
- Department of Oral and Maxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center - University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, Breisacher Straße 115a, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|