1
|
Guo J, Li F, Wang L, Deng H, He L, Zhao J. Molecular identification of a thioredoxin peroxidase in Babesia gibsoni with potential against oxidative stress. Parasitol Res 2025; 124:28. [PMID: 40045010 PMCID: PMC11882686 DOI: 10.1007/s00436-025-08472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Babesia gibsoni is the infectious agent of canine babesiosis, a vector-borne infection that poses a global threat to the canine health. As B. gibsoni is an erythrocytic intracellular parasite, the completion of its genome and transcriptome sequencing and analysis facilitates the elucidation of the mechanism of B. gibsoni residue in the erythrocyte. The main function of red blood cells (RBCs) is oxygen delivery; thus, B. gibsoni may be exposed to high levels of oxidative stress. To date, no report is available on the mechanism by which B. gibsoni survives oxidative stress inside the RBCs. In this study, the thioredoxin peroxidase, an important type of peroxidoxin, was identified from B. gibsoni, with 255 amino acids and a molecular weight of 27.7 kDa. There are two conserved "VCP" domains at the N- and C-termini, respectively, indicating that this gene was a 2-Cys peroxiredoxin belonging to the PTZ00137 superfamily. It was named BgTPx-2 and was detected to be located in the B. gibsoni-infected erythrocytes through an indirect immunofluorescence assay using the polyclonal antibody against the recombinant TPx-2. Additionally, its antioxidant activity was analyzed by mixed-function oxidation assay, and BgTPx-2 could protect the pBluescript SK ( +) plasmid from oxidative damage, suggesting an antioxidant function of BgTPx-2. Moreover, the immunogenicity of BgTPx-2 was tested by Western blotting and ELISA using the serum of beagle dogs infected with B. gibsoni, and the positive serum exhibited a detectable and significant antibody response against BgTPx-2 on day 4 and day 9 post-infection, respectively.
Collapse
Affiliation(s)
- Jiaying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease, Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lingna Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Han Deng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Vogelsang L, Dietz KJ. Regeneration of cytosolic thiol peroxidases. PHYSIOLOGIA PLANTARUM 2023; 175:e14042. [PMID: 37882285 DOI: 10.1111/ppl.14042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Three soluble type two peroxiredoxins (PRXIIB, C, D) and two glutathione peroxidase-like enzymes (GPXL2, 8) reside in the cytosol of Arabidopsis thaliana cells and function both as thiol-dependent antioxidants and redox sensors. Their primary substrate is H2 O2 , but they also accept other peroxides with a distinct preference between PRXII and GPXL. Less known is their regeneration specificity in the light of the large set of thiol reductases, namely eight annotated thioredoxin h isoforms (TRXh1-5, 7-9), a few TRX-like proteins, including CxxS1 (formerly TRXh6) and several glutaredoxins (GRX) associated with the cytosol. This study addressed this open question by in vitro enzyme tests using recombinant protein. GPXL2 and 8 exclusively accepted electrons from the TRX system, namely TRXh1-5 and TDX, while PRXIIB/C/D were efficiently regenerated with GRXC1 and C2 but not the TRX-like protein Picot1. They showed significant but low activity (<3% of GRXC2) with TRXh1-5 and TDX. A similar reduction efficiency with TRX was seen in the insulin assay, only TDX was less active. Finally, the reduction of oxidized cytosolic malate dehydrogenase 1, as measured by regained activity, showed an extremely broad ability to accept electrons from different TRXs and GRXs. The results demonstrate redundancy and specificity in the redox regulatory network of the cytosol.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Mo W, Li Q, He X, Lu Z, Xu H, Zheng X, Guo J, Lu Y, Wang S. Identification and characterization of Prx5 and Prx6 in Chilo suppressalis in response to environmental stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22030. [PMID: 37282754 DOI: 10.1002/arch.22030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.
Collapse
Affiliation(s)
- Wujia Mo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuping Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Technical Centre for Animal, Plant, and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| |
Collapse
|
5
|
Luo J, Wang X, Wei T, Lang K, Bao C, Yang D. Peroxinredoxin 6 reduction accelerates cigarette smoke extract‑induced senescence by regulating autophagy in BEAS‑2B cells. Exp Ther Med 2023; 26:375. [PMID: 37415842 PMCID: PMC10320655 DOI: 10.3892/etm.2023.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
Cigarette smoke (CS)-induced accelerated senescence and insufficient autophagy has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Peroxiredoxin (PRDX) 6 is a protein with prevalent antioxidant capacity. Previous studies indicate that PRDX6 could activate autophagy and alleviate senescence in other diseases. The present study investigated whether PRDX6-regulated autophagy was involved in the regulation of CS extract (CSE)-induced BEAS-2B cell senescence via the knockdown of PRDX6 expression. Furthermore, the present study evaluated the mRNA levels of PRDX6, autophagy and senescence-associated genes in the small airway epithelium from patients with COPD by analyzing the GSE20257 dataset from the Gene Expression Omnibus database. The results demonstrated that CSE reduced PRDX6 expression levels and transiently induced the activation of autophagy, followed by the accelerated senescence of BEAS-2B cells. Knockdown of PRDX6 induced autophagy degradation and accelerated senescence in CSE-treated BEAS-2B cells. Furthermore, autophagy inhibition by 3-Methyladenine increased P16 and P21 expression levels, while autophagy activation by rapamycin reduced P16 and P21 expression levels in CSE-treated BEAS-2B cells. The GSE20257 dataset revealed that patients with COPD had lower PRDX6, sirtuin (SIRT) 1 and SIRT6 mRNA levels, and higher P62 and P16 mRNA levels compared with non-smokers. P62 mRNA was significantly correlated with P16, P21 and SIRT1, which indicated that insufficient autophagic clearance of damaged proteins could be involved in accelerated cell senescence in COPD. In conclusion, the present study demonstrated a novel protective role for PRDX6 in COPD. Furthermore, a reduction in PRDX6 could accelerate senescence by inducing autophagy impairment in CSE-treated BEAS-2B cells.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Xiaocen Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Tingting Wei
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Ke Lang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chen Bao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Dong Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
6
|
Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs. Methods Mol Biol 2022; 2499:155-176. [PMID: 35696080 PMCID: PMC9844236 DOI: 10.1007/978-1-0716-2317-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups.In this study, we developed a novel computational method named "RF-Prx" based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead.
Collapse
|
7
|
Liebthal M, Kushwah MS, Kukura P, Dietz KJ. Single molecule mass photometry reveals the dynamic oligomerization of human and plant peroxiredoxins. iScience 2021; 24:103258. [PMID: 34765909 PMCID: PMC8571717 DOI: 10.1016/j.isci.2021.103258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Protein oligomerization is central to biological function and regulation, yet its experimental quantification and measurement of dynamic transitions in solution remain challenging. Here, we show that single molecule mass photometry quantifies affinity and polydispersity of heterogeneous protein complexes in solution. We demonstrate these capabilities by studying the functionally relevant oligomeric equilibria of 2-cysteine peroxiredoxins (2CPs). Comparison of the polydispersity of plant and human 2CPs as a function of concentration and redox state revealed features conserved among all 2CPs. In addition, we also find species-specific differences in oligomeric transitions, the occurrence of intermediates and the formation of high molecular weight complexes, which are associated with chaperone activity or act as a storage pool for more efficient dimers outlining the functional differentiation of human 2CPs. Our results point to a diversified functionality of oligomerization for 2CPs and illustrate the power of mass photometry for characterizing heterogeneous oligomeric protein distributions in near native conditions.
Collapse
Affiliation(s)
- Michael Liebthal
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Manish Singh Kushwah
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QZ Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany
| |
Collapse
|
8
|
Escrivani DO, Charlton RL, Caruso MB, Burle-Caldas GA, Borsodi MPG, Zingali RB, Arruda-Costa N, Palmeira-Mello MV, de Jesus JB, Souza AMT, Abrahim-Vieira B, Freitag-Pohl S, Pohl E, Denny PW, Rossi-Bergmann B, Steel PG. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl Trop Dis 2021; 15:e0009951. [PMID: 34780470 PMCID: PMC8664226 DOI: 10.1371/journal.pntd.0009951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/10/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones. Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world wide considered at risk, 12 million people currently infected and an economic cost that can be estimated in terms of >3.3 million working life years lost, leishmaniasis is a major global health challenge. The disease is of particular importance in Brazil. Current treatment of leishmaniasis is difficult requiring a long, costly course of drug treatment using old drugs with poor safety indications requiring close medical supervision. Moreover, resistance to current antileishmanials is growing, emphasising a major need for new drug targets. In earlier work we had identified a naturally inspired chalcone which had promising antileishmanial activity but with no known mode of action. In this work we use an analogue of this molecule as an activity based probe to identify a protein target of the chalcone. This protein, cTXNPx, has a major role in protecting the parasite against attack by reactive oxygen species in the host cell. By inhibiting this protein the parasite can no longer survive in the host. Collectively this work validates cTXNPx as a drug target with the chalcone as a lead structure for future drug discovery programmes.
Collapse
Affiliation(s)
- Douglas O. Escrivani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Rebecca L. Charlton
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela A. Burle-Caldas
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Maria Paula G. Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Arruda-Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jéssica B. de Jesus
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (BR-B); (PGS)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- * E-mail: (BR-B); (PGS)
| |
Collapse
|
9
|
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function. Structure 2021; 29:640-654. [PMID: 33945778 DOI: 10.1016/j.str.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between low- and high-molecular-weight oligomers.
Collapse
Affiliation(s)
- Laura Troussicot
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 405 30 Göteborg, Sweden.
| |
Collapse
|
10
|
Li M, Wang J, Xu W, Wang Y, Zhang M, Wang M. Crystal structure of
Akkermansia muciniphila
peroxiredoxin reveals a novel regulatory mechanism of typical 2‐Cys Prxs by a distinct loop. FEBS Lett 2020; 594:1550-1563. [DOI: 10.1002/1873-3468.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/17/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Mengyu Li
- School of Life Sciences Anhui University Hefei China
| | - Junchao Wang
- School of Life Sciences Anhui University Hefei China
- Institutes of Physical Science and Information Technology Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Wenjuan Xu
- School of Life Sciences Anhui University Hefei China
| | - Yongzhong Wang
- School of Life Sciences Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Min Zhang
- School of Life Sciences Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| | - Mingzhu Wang
- School of Life Sciences Anhui University Hefei China
- Institutes of Physical Science and Information Technology Anhui University Hefei China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes Anhui University Hefei China
| |
Collapse
|
11
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
12
|
Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019; 20:ijms20184407. [PMID: 31500275 PMCID: PMC6770548 DOI: 10.3390/ijms20184407] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are multifunctional cellular organelles that are major producers of reactive oxygen species (ROS) in eukaryotes; to maintain the redox balance, they are supplemented with different ROS scavengers, including mitochondrial peroxiredoxins (Prdxs). Mitochondrial Prdxs have physiological and pathological significance and are associated with the initiation and progression of various cancer types. In this review, we have focused on signaling involving ROS and mitochondrial Prdxs that is associated with cancer development and progression. An upregulated expression of Prdx3 and Prdx5 has been reported in different cancer types, such as breast, ovarian, endometrial, and lung cancers, as well as in Hodgkin's lymphoma and hepatocellular carcinoma. The expression of Prdx3 and Prdx5 in different types of malignancies involves their association with different factors, such as transcription factors, micro RNAs, tumor suppressors, response elements, and oncogenic genes. The microenvironment of mitochondrial Prdxs plays an important role in cancer development, as cancerous cells are equipped with a high level of antioxidants to overcome excessive ROS production. However, an increased production of Prdx3 and Prdx5 is associated with the development of chemoresistance in certain types of cancers and it leads to further complications in cancer treatment. Understanding the interplay between mitochondrial Prdxs and ROS in carcinogenesis can be useful in the development of anticancer drugs with better proficiency and decreased resistance. However, more targeted studies are required for exploring the tumor microenvironment in association with mitochondrial Prdxs to improve the existing cancer therapies and drug development.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Dong-Seok Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
13
|
Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney. Cell Tissue Res 2019; 378:319-332. [DOI: 10.1007/s00441-019-03073-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
|
14
|
Ling XD, Dong WT, Zhang Y, Hu JJ, Zhang WD, Wu JT, Liu JX, Zhao XX. Baculoviral infection reduces the expression of four allergen proteins of silkworm pupa. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21539. [PMID: 30790339 DOI: 10.1002/arch.21539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Silkworm (Bombyx mori) larvae are widely used to express exogenous proteins. Moreover, some silkworm pupal proteins can be used as drug-loading materials for selfexpressed oral tolerance drugs. However, several proteins expressed in silkworm pupae cause severe allergic reactions in humans and animals. Interestingly, some baculovirus vectors have been shown to alter the host gene and its expression in insect cells, but this has not been confirmed in silkworm. Here, we analyzed the effects of infection with an empty B. mori baculovirus (BmNPV) vector on silkworm pupal protein expression. Using a proteomics approach, the allergens thiol peroxiredoxin (Jafrac1), 27-kDa glycoprotein (p27k), arginine kinase, and paramyosin as well as 32 additional differentially expressed proteins were identified. Downregulation of the messenger RNA expression of the four known allergens was observed after BmNPV infection; subsequent changes in protein expression were confirmed by the western blot analysis using polyclonal antibodies prepared with recombinant proteins of the four allergens. Collectively, these data indicate that the four known allergens of silkworm pupae can be reduced by infection ith an empty BmNPV vector to increase the safety of silkworm pupa-based exogenous protein expression and drug delivery of oral pharmaceuticals. In addition, the four recombinant allergen proteins may contribute to the diagnosis of allergic diseases of silkworm pupa.
Collapse
Affiliation(s)
- Xiao-Dong Ling
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wei-Tao Dong
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun-Jie Hu
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wang-Dong Zhang
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jin-Tang Wu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Ji-Xing Liu
- Product R&D, Lanzhou Weitesen Biological Technology Co. Ltd., Lanzhou, China
| | - Xing-Xu Zhao
- Department of Clinical Veterinary, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Loberg MA, Hurtig JE, Graff AH, Allan KM, Buchan JA, Spencer MK, Kelly JE, Clodfelter JE, Morano KA, Lowther WT, West JD. Aromatic Residues at the Dimer-Dimer Interface in the Peroxiredoxin Tsa1 Facilitate Decamer Formation and Biological Function. Chem Res Toxicol 2019; 32:474-483. [PMID: 30701970 DOI: 10.1021/acs.chemrestox.8b00346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To prevent the accumulation of reactive oxygen species and limit associated damage to biological macromolecules, cells express a variety of oxidant-detoxifying enzymes, including peroxiredoxins. In Saccharomyces cerevisiae, the peroxiredoxin Tsa1 plays a key role in peroxide clearance and maintenance of genome stability. Five homodimers of Tsa1 can assemble into a toroid-shaped decamer, with the active sites in the enzyme being shared between individual dimers in the decamer. Here, we have examined whether two conserved aromatic residues at the decamer-building interface promote Tsa1 oligomerization, enzymatic activity, and biological function. When substituting either or both of these aromatic residues at the decamer-building interface with either alanine or leucine, we found that the Tsa1 decamer is destabilized, favoring dimeric species instead. These proteins exhibit varying abilities to rescue the phenotypes of oxidant sensitivity and genomic instability in yeast lacking Tsa1 and Tsa2, with the individual leucine substitutions at this interface partially complementing the deletion phenotypes. The ability of Tsa1 decamer interface variants to partially rescue peroxidase function in deletion strains is temperature-dependent and correlates with their relative rate of reactivity with hydrogen peroxide and their ability to interact with thioredoxin. Based on the combined results of in vitro and in vivo assays, our findings indicate that multiple steps in the catalytic cycle of Tsa1 may be impaired by introducing substitutions at its decamer-building interface, suggesting a multifaceted biological basis for its assembly into decamers.
Collapse
Affiliation(s)
- Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States.,Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Aaron H Graff
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - John A Buchan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Matthew K Spencer
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Joseph E Kelly
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jill E Clodfelter
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| |
Collapse
|
16
|
Pacifici F, Della Morte D, Capuani B, Pastore D, Bellia A, Sbraccia P, Di Daniele N, Lauro R, Lauro D. Peroxiredoxin6, a Multitask Antioxidant Enzyme Involved in the Pathophysiology of Chronic Noncommunicable Diseases. Antioxid Redox Signal 2019; 30:399-414. [PMID: 29160110 DOI: 10.1089/ars.2017.7427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Chronic noncommunicable diseases (NCDs) are the leading causes of disability and death worldwide. NCDs mainly comprise diabetes mellitus, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and neurological degenerative diseases, which kill more than 80% of population, especially the elderly, worldwide. Recent Advances: Several recent theories established NCDs as multifactorial diseases, where a combination of genetic, epigenetic, and environmental factors contributes to their pathogenesis. Nevertheless, recent findings suggest that the common factor linking all these pathologies is an increase in oxidative stress and the age-related loss of the antioxidant mechanisms of defense against it. Impairment in mitochondrial homeostasis with consequent deregulation in oxidative stress balance has also been suggested. CRITICAL ISSUES Therefore, antioxidant proteins deserve particular attention for their potential role against NCDs. In particular, peroxiredoxin(Prdx)6 is a unique antioxidant enzyme, belonging to the Prdx family, with double properties, peroxidase and phospholipase activities. Through these activities, Prdx6 has been shown to be a powerful antioxidant enzyme, implicated in the pathogenesis of different NCDs. Recently, we described a phenotype of diabetes mellitus in Prdx6 knockout mice, suggesting a pivotal role of Prdx6 in the pathogenesis of cardiometabolic diseases. FUTURE DIRECTIONS Increasing awareness on the role of antioxidant defenses in the pathogenesis of NCDs may open novel therapeutic approaches to reduce the burden of this pandemic phenomenon. However, knowledge of the role of Prdx6 in NCD prevention and pathogenesis is still not clarified.
Collapse
Affiliation(s)
- Francesca Pacifici
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - David Della Morte
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 2 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
| | - Barbara Capuani
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Donatella Pastore
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Alfonso Bellia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Paolo Sbraccia
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Nicola Di Daniele
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| | - Renato Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
| | - Davide Lauro
- 1 Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
- 3 Policlinico Tor Vergata Foundation, University Hospital , Rome, Italy
| |
Collapse
|
17
|
Lin Y, Wang J, Zheng W, Luo Q, Wu K, Du J, Zhao Y, Wang F. Organometallic ruthenium anticancer complexes inhibit human peroxiredoxin I activity by binding to and inducing oxidation of its catalytic cysteine residue. Metallomics 2019; 11:546-555. [DOI: 10.1039/c8mt00352a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ruthenium arene anticancer complexes bind to human peroxiredoxin I, leading to oxidation of thiolate and failure of forming a disulfide bond.
Collapse
Affiliation(s)
- Yu Lin
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Jie Wang
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Wei Zheng
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Jun Du
- College of Chemistry and Materials Science
- Key Laboratory of Functional Molecular Solids
- the Ministry of Education
- Anhui Laboratory of Molecular-Based Materials
- Anhui Normal University
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences
- National Centre for Mass Spectrometry in Beijing
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
| |
Collapse
|
18
|
De Armas MI, Esteves R, Viera N, Reyes AM, Mastrogiovanni M, Alegria TGP, Netto LES, Tórtora V, Radi R, Trujillo M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic Biol Med 2019; 130:369-378. [PMID: 30391677 DOI: 10.1016/j.freeradbiomed.2018.10.451] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Collapse
Affiliation(s)
- María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Romina Esteves
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Thiago G P Alegria
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
19
|
Piecing Together How Peroxiredoxins Maintain Genomic Stability. Antioxidants (Basel) 2018; 7:antiox7120177. [PMID: 30486489 PMCID: PMC6316004 DOI: 10.3390/antiox7120177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins, a highly conserved family of thiol oxidoreductases, play a key role in oxidant detoxification by partnering with the thioredoxin system to protect against oxidative stress. In addition to their peroxidase activity, certain types of peroxiredoxins possess other biochemical activities, including assistance in preventing protein aggregation upon exposure to high levels of oxidants (molecular chaperone activity), and the transduction of redox signals to downstream proteins (redox switch activity). Mice lacking the peroxiredoxin Prdx1 exhibit an increased incidence of tumor formation, whereas baker's yeast (Saccharomyces cerevisiae) lacking the orthologous peroxiredoxin Tsa1 exhibit a mutator phenotype. Collectively, these findings suggest a potential link between peroxiredoxins, control of genomic stability, and cancer etiology. Here, we examine the potential mechanisms through which Tsa1 lowers mutation rates, taking into account its diverse biochemical roles in oxidant defense, protein homeostasis, and redox signaling as well as its interplay with thioredoxin and thioredoxin substrates, including ribonucleotide reductase. More work is needed to clarify the nuanced mechanism(s) through which this highly conserved peroxidase influences genome stability, and to determine if this mechanism is similar across a range of species.
Collapse
|
20
|
Nitrosative stress defences of the enterohepatic pathogenic bacterium Helicobacter pullorum. Sci Rep 2017; 7:9909. [PMID: 28855660 PMCID: PMC5577044 DOI: 10.1038/s41598-017-10375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/07/2017] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pullorum is an avian bacterium that causes gastroenteritis, intestinal bowel and hepatobiliary diseases in humans. Although H. pullorum has been shown to activate the mammalian innate immunity with release of nitric oxide (NO), the proteins that afford protection against NO and reactive nitrogen species (RNS) remain unknown. Here several protein candidates of H. pullorum, namely a truncated (TrHb) and a single domain haemoglobin (SdHb), and three peroxiredoxin-like proteins (Prx1, Prx2 and Prx3) were investigated. We report that the two haemoglobin genes are induced by RNS, and that SdHb confers resistance to nitrosative stress both in vitro and in macrophages. For peroxiredoxins, the prx2 and prx3 expression is enhanced by peroxynitrite and hydrogen peroxide, respectively. Mutation of prx1 does not alter the resistance to these stresses, while the single ∆prx2 and double ∆prx1∆prx2 mutants have decreased viability. To corroborate the physiological data, the biochemical analysis of the five recombinant enzymes was done, namely by stopped-flow spectrophotometry. It is shown that H. pullorum SdHb reacts with NO much more quickly than TrHb, and that the three Prxs react promptly with peroxynitrite, Prx3 displaying the highest reactivity. Altogether, the results unveil SdHb and Prx3 as major protective systems of H. pullorum against nitrosative stress.
Collapse
|
21
|
Wang X, Hu B, Wen C, Zhang M, Jian S, Yang G. Molecular cloning, expression and antioxidative activity of 2-cys-peroxiredoxin from freshwater mussel Cristaria plicata. FISH & SHELLFISH IMMUNOLOGY 2017; 66:254-263. [PMID: 28499967 DOI: 10.1016/j.fsi.2017.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/25/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Peroxiredoxins (Prxs) play an important role against various oxidative stresses by catalyzing the reduction of hydrogen peroxide (H2O2) and organic hydroperoxides to less harmful form. A 2-cys peroxiredoxin, designated as CpPrx, was cloned from hemocytes of freshwater mussel Cristaria plicata. The full length cDNA of CpPrx is 1247 bp, which includes an open reading frame (ORF) of 591bp, encoding 196 amino acids. CpPrx possesses two conserved cysteine residues (Cys49, Cys170). The deduced amino acid sequence of CpPrx showed a high level (67-74%) of sequence similarity to 2-Cys Prxs from other species. The results of real-time quantitative PCR revealed that CpPrx mRNA was constitutively expressed in tissues, and the highest expression levels were in hepatopancreas and gills. After peptidoglycan (PGN) and Aeromonas hydrophila challenge, the expression levels of CpPrx mRNA were up-regulated in hemocytes and hepatopancreas. The cDNA of CpPrx was cloned into the plasmid pET-32, and the recombinant protein was expressed in Escherichia coli BL21(DE3). Comparison with DE3-pET-32 and DE3 strain, the cells of DE3-pET-32-CpPrx exhibited resistance to the concentration of 0.4, 0.8 and 1.2 mmoL/L H2O2 in vivo.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Ming Zhang
- College of Jiangxi Biotech Vocational, Nanchang 330200, China.
| | - Shaoqing Jian
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
22
|
Dokainish HM, Simard DJ, Gauld JW. A Pseudohypervalent Sulfur Intermediate as an Oxidative Protective Mechanism in the Archaea Peroxiredoxin Enzyme ApTPx. J Phys Chem B 2017. [DOI: 10.1021/acs.jpcb.7b04671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hisham M. Dokainish
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Daniel J. Simard
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
23
|
Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity. Biochem J 2017; 474:1373-1394. [PMID: 28219939 PMCID: PMC5452528 DOI: 10.1042/bcj20160851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/01/2023]
Abstract
Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2. Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants.
Collapse
|
24
|
Nicolussi A, D'Inzeo S, Capalbo C, Giannini G, Coppa A. The role of peroxiredoxins in cancer. Mol Clin Oncol 2017; 6:139-153. [PMID: 28357082 PMCID: PMC5351761 DOI: 10.3892/mco.2017.1129] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs) are a ubiquitously expressed family of small (22–27 kDa) non-seleno peroxidases that catalyze the peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are highly involved in the control of various physiological functions, including cell growth, differentiation, apoptosis, embryonic development, lipid metabolism, the immune response, as well as cellular homeostasis. Although the protective role of PRDXs in cardiovascular and neurological diseases is well established, their role in cancer remains controversial. Increasing evidence suggests the involvement of PRDXs in carcinogenesis and in the development of drug resistance. Numerous types of cancer cells, in fact, are characterized by an increase in reactive oxygen species (ROS) production, and often exhibit an altered redox environment compared with normal cells. The present review focuses on the complex association between oxidant balance and cancer, and it provides a brief account of the involvement of PRDXs in tumorigenesis and in the development of chemoresistance.
Collapse
Affiliation(s)
- Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Sonia D'Inzeo
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| |
Collapse
|
25
|
The Crystal Structure of Peroxiredoxin Asp f3 Provides Mechanistic Insight into Oxidative Stress Resistance and Virulence of Aspergillus fumigatus. Sci Rep 2016; 6:33396. [PMID: 27624005 PMCID: PMC5022050 DOI: 10.1038/srep33396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.
Collapse
|
26
|
Trujillo M, Alvarez B, Radi R. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res 2015; 50:150-71. [PMID: 26329537 DOI: 10.3109/10715762.2015.1089988] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.
Collapse
Affiliation(s)
- Madia Trujillo
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| | - Beatriz Alvarez
- b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and.,c Laboratorio de Enzimología, Facultad de Ciencias , Universidad de la República , Montevideo , Uruguay
| | - Rafael Radi
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| |
Collapse
|
27
|
Staudacher V, Djuika CF, Koduka J, Schlossarek S, Kopp J, Büchler M, Lanzer M, Deponte M. Plasmodium falciparum antioxidant protein reveals a novel mechanism for balancing turnover and inactivation of peroxiredoxins. Free Radic Biol Med 2015; 85:228-36. [PMID: 25952724 DOI: 10.1016/j.freeradbiomed.2015.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Life under aerobic conditions has shaped peroxiredoxins (Prx) as ubiquitous thiol-dependent hydroperoxidases and redox sensors. Structural features that balance the catalytically active or inactive redox states of Prx, and, therefore, their hydroperoxidase or sensor function, have so far been analyzed predominantly for Prx1-type enzymes. Here we identify and characterize two modulatory residues of the Prx5-type model enzyme PfAOP from the malaria parasite Plasmodium falciparum. Gain- and loss-of-function mutants reveal a correlation between the enzyme parameters and the inactivation susceptibility of PfAOP with the size of residue 109 and the presence or absence of a catalytically relevant but nonessential cysteine residue. Based on our kinetic data and the crystal structure of PfAOP(L109M), we suggest a novel mechanism for balancing the hydroperoxidase activity and inactivation susceptibility of Prx5-type enzymes. Our study provides unexpected insights into Prx structure-function relationships and contributes to our understanding of what makes Prx good enzymes or redox sensors.
Collapse
Affiliation(s)
- Verena Staudacher
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Carine F Djuika
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Joshua Koduka
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Sarah Schlossarek
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Jürgen Kopp
- Biochemistry Center (BZH), Ruprecht-Karls University, D-69120 Heidelberg, Germany; Cellnetworks Excellence Cluster, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Marleen Büchler
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Michael Lanzer
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany
| | - Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Sun CC, Dong WR, Zhao J, Nie L, Xiang LX, Zhu G, Shao JZ. Cysteine-independent Catalase-like Activity of Vertebrate Peroxiredoxin 1 (Prx1). J Biol Chem 2015; 290:19942-54. [PMID: 26088136 DOI: 10.1074/jbc.m115.659011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis.
Collapse
Affiliation(s)
- Cen-Cen Sun
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Wei-Ren Dong
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Jing Zhao
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Li Nie
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Li-Xin Xiang
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Guan Zhu
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and the Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Jian-Zhong Shao
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| |
Collapse
|
29
|
Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 2015; 5:9705. [PMID: 25951439 PMCID: PMC4423475 DOI: 10.1038/srep09705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/13/2015] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is a neglected vector-born disease caused by a protozoan of the genus Leishmania and affecting more than 1.300.000 people worldwide. The couple tryparedoxin/tryparedoxin peroxidase is essential for parasite survival in the host since it neutralizes the hydrogen peroxide produced by macrophages during the infection. Herein we report a study aimed at discovering the first class of compounds able to non-covalently inhibit tryparedoxin peroxidase. We have solved the high-resolution structure of Tryparedoxin peroxidase I from Leishmania major (LmTXNPx) in the reduced state and in fully folded conformation. A first series of compounds able to inhibit LmTXNPx was identified by means of the high throughput docking technique. The inhibitory activity of these compounds was validated by a Horseradish peroxidase-based enzymatic assay and their affinity for LmTXNPx calculated by surface plasmon resonance experiments. On the basis of these results, the analysis of the enzyme-inhibitor docked models allowed us to rationally design and synthesize a series of N,N-disubstituted 3-aminomethyl quinolones. These compounds showed an inhibitory potency against LmTXNPx in the micromolar range. Among them, compound 12 represents the first non-covalent LmTXNPx inhibitor reported to date and could pave the way to the discovery of a new class of drugs against leishmaniasis.
Collapse
|
30
|
Cho KJ, Park Y, Khan T, Lee JH, Kim S, Seok JH, Chung YB, Cho AE, Choi Y, Chang TS, Kim KH. Crystal Structure of Dimeric Human Peroxiredoxin-1 C83S Mutant. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ki Joon Cho
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - YiHo Park
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Taslima Khan
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Sella Kim
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Yeon Bin Chung
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Art E. Cho
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| | - Yongseok Choi
- Department of Life Sciences; Korea University; Seoul 136-701 Korea
| | - Tong-Shin Chang
- Department of Pharmacology; Ewha Women's University; Seoul 121-742 Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics; Korea University; Sejong 339-700 Korea
| |
Collapse
|
31
|
Abstract
Peroxiredoxins were not recognized as a family of enzymes until the 1990s but are now known to be the dominant peroxidases in most organisms. Here, the history and fundamental properties of peroxiredoxins are briefly reviewed, with a special focus on describing how an exquisitely tunable balance between fully folded and locally unfolded conformations plays a large role in peroxiredoxin catalytic properties.
Collapse
Affiliation(s)
- P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
32
|
Phillips AJ, Littlejohn J, Yewdall NA, Zhu T, Valéry C, Pearce FG, Mitra AK, Radjainia M, Gerrard JA. Peroxiredoxin is a Versatile Self-Assembling Tecton for Protein Nanotechnology. Biomacromolecules 2014; 15:1871-81. [DOI: 10.1021/bm500261u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amy J. Phillips
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jacob Littlejohn
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - N. Amy Yewdall
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tong Zhu
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Céline Valéry
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - F. Grant Pearce
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alok K. Mitra
- School
of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Mazdak Radjainia
- School
of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Juliet A. Gerrard
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington, New Zealand
- School
of Biological Sciences, University of Auckland, Auckland, New Zealand
- Callaghan
Innovation
Research Limited, Lower Hutt, New Zealand
| |
Collapse
|
33
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
34
|
Paulsen C, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013; 113:4633-79. [PMID: 23514336 PMCID: PMC4303468 DOI: 10.1021/cr300163e] [Citation(s) in RCA: 876] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Candice
E. Paulsen
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| |
Collapse
|
35
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
36
|
Mu Y, Lian FM, Teng YB, Ao J, Jiang YL, He YX, Chen Y, Zhou CZ, Chen X. The N-terminal β-sheet of peroxiredoxin 4 in the large yellow croaker Pseudosciaena crocea is involved in its biological functions. PLoS One 2013; 8:e57061. [PMID: 23451146 PMCID: PMC3581551 DOI: 10.1371/journal.pone.0057061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
Peroxiredoxins (Prxs) are thiol-specific antioxidant proteins that exhibit peroxidase and peroxynitrite reductase activities involved in the reduction of reactive oxygen species. The peroxiredoxin Prx4 from the large yellow croaker Pseudosciaena crocea is a typical 2-Cys Prx with an N-terminal signal peptide. We solved the crystal structure of Prx4 at 1.90 Å and revealed an N-terminal antiparallel β-sheet that contributes to the dimer interface. Deletion of this β-sheet decreased the in vitro peroxidase activity to about 50% of the wild-type. In vivo assays further demonstrated that removal of this β-sheet led to some impairment in the ability of Prx4 to negatively regulate nuclear factor-κB (NF-κB) activity and to perform its role in anti-bacterial immunity. These results provide new insights into the structure and function relationship of a peroxiredoxin from bony fish.
Collapse
Affiliation(s)
- Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, People’s Republic of China
| | - Fu-Ming Lian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yan-Bin Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, People’s Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yong-Xing He
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- * E-mail: (XC) (CZ); (C-ZZ) (XC)
| | - Xinhua Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, People’s Republic of China
- * E-mail: (XC) (CZ); (C-ZZ) (XC)
| |
Collapse
|
37
|
Cui H, Wang Y, Wang Y, Qin S. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria. BMC Evol Biol 2012; 12:220. [PMID: 23157370 PMCID: PMC3514251 DOI: 10.1186/1471-2148-12-220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 10/25/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. RESULTS Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. CONCLUSIONS The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.
Collapse
Affiliation(s)
- Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road, Yantai 264003, People’s Republic of China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, People’s Republic of China
| | - Yipeng Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road, Yantai 264003, People’s Republic of China
| | - Yinchu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road, Yantai 264003, People’s Republic of China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, People’s Republic of China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road, Yantai 264003, People’s Republic of China
| |
Collapse
|
38
|
Kim IS, Kim YS, Yoon HS. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:3519-33. [DOI: 10.1007/s00253-012-4410-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 12/15/2022]
|
39
|
Perkins A, Gretes MC, Nelson KJ, Poole LB, Karplus PA. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes. Biochemistry 2012; 51:7638-50. [PMID: 22928725 DOI: 10.1021/bi301017s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxiredoxins (Prx) make up a family of enzymes that reduce peroxides using a peroxidatic cysteine residue; among these, members of the PrxQ subfamily are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second "resolving" cysteine is located five residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally determined by the RIKEN structural genomics group. We reprocessed the diffraction data and conducted further refinement to yield models with R(free) values lowered by 2.3-7.2% and resolution extended by 0.2-0.3 Å, making one, at 1.4 Å, one of the best resolved peroxiredoxins to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of ~20 residues from a pair of α-helices to a β-hairpin and 3(10)-helix. Each conformation has ~10 residues with a high level of disorder providing slack that allows the dramatic shift, and the two conformations are anchored to the protein core by distinct nonpolar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the Protein Data Bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized.
Collapse
Affiliation(s)
- Arden Perkins
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
40
|
Fiorillo A, Colotti G, Boffi A, Baiocco P, Ilari A. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl Trop Dis 2012; 6:e1781. [PMID: 22928053 PMCID: PMC3424247 DOI: 10.1371/journal.pntd.0001781] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is a neglected disease caused by Leishmania, an intracellular protozoan parasite which possesses a unique thiol metabolism based on trypanothione. Trypanothione is used as a source of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides produced by macrophages during infection. This detoxification pathway is not only unique to the parasite but is also essential for its survival; therefore, it constitutes a most attractive drug target. Several forms of TXNPx, with very high sequence identity to one another, have been found in Leishmania strains, one of which has been used as a component of a potential anti-leishmanial polyprotein vaccine. The structures of cytosolic TXN and TXNPx from L. major (LmTXN and LmTXNPx) offer a unique opportunity to study peroxide reduction in Leishmania parasites at a molecular level, and may provide new tools for multienzyme inhibition-based drug discovery. Structural analyses bring out key structural features to elucidate LmTXN and LmTXNPx function. LmTXN displays an unusual N-terminal α-helix which allows the formation of a stable domain-swapped dimer. In LmTXNPx, crystallized in reducing condition, both the locally unfolded (LU) and fully folded (FF) conformations, typical of the oxidized and reduced protein respectively, are populated. The structural analysis presented here points to a high flexibility of the loop that includes the peroxidatic cysteine which facilitates Cys52 to form an inter-chain disulfide bond with the resolving cysteine (Cys173), thereby preventing over-oxidation which would inactivate the enzyme. Analysis of the electrostatic surface potentials of both LmTXN and LmTXNPx unveils the structural elements at the basis of functionally relevant interaction between the two proteins. Finally, the structural analysis of TXNPx allows us to identify the position of the epitopes that make the protein antigenic and therefore potentially suitable to be used in an anti-leishmanial polyprotein vaccine. Leishmania spp. are protozoa responsible for Leishmaniases, neglected diseases killing up to 60,000 people every year. Current therapies rely mainly on antimonial drugs that are inadequate due to poor drug efficacy and safety, combined with increasing drug resistance. To overcome these problems, there is an urgent need to find new and more affordable drugs. Leishmania reduces the hydrogen peroxide produced by macrophages during the infection by means of the tryparedoxin/tryparedoxin peroxidase couple. The two enzymes are potentially suitable drug targets since they are both necessary for parasite survival and absent in the human host. To understand the molecular basis of peroxide reduction in the Leishmania parasites, we have solved the X-ray crystal structures of both enzymes. Structural analyses highlight oligomerization of the two proteins and allow the regions responsible for their interaction to be identified. Moreover, based on the X-ray structures and on electronic microscopy data present in literature for the homologous proteins from Trypanosoma brucei, we have generated a model of interaction between tryparedoxin and tryparedoxin peroxidase from L. major. From the X-ray structure and from this model, we have identified the epitopes of tryparedoxin peroxidase, which is part of a potential threecomponent vaccine that is presently being studied in animal models and in human.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Dipartimento di Scienze Biochimiche, University Sapienza, Rome, Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
- * E-mail: (AI), (GC)
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, University Sapienza, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Università di Roma “Sapienza”, Rome, Italy
| | - Paola Baiocco
- Dipartimento di Scienze Biochimiche, University Sapienza, Rome, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy
- * E-mail: (AI), (GC)
| |
Collapse
|
41
|
Wu MJ, Rogers PJ, Clarke FM. 125thAnniversary Review: The role of proteins in beer redox stability. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ming J. Wu
- School of Biomolecular and Physical Sciences and Health; University of Western Sydney; Locked Bag 1797; Penrith; NSW; 2751; Australia
| | - Peter J. Rogers
- School of Biomolecular and Physical Sciences; Griffith University; Nathan; Queensland; 4111; Australia
| | - Frank M. Clarke
- School of Biomolecular and Physical Sciences; Griffith University; Nathan; Queensland; 4111; Australia
| |
Collapse
|
42
|
Lian FM, Yu J, Ma XX, Yu XJ, Chen Y, Zhou CZ. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species. J Biol Chem 2012; 287:17077-17087. [PMID: 22474296 DOI: 10.1074/jbc.m112.357368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peroxiredoxins (Prxs) are thiol-specific antioxidant proteins that protect cells against reactive oxygen species and are involved in cellular signaling pathways. Alkyl hydroperoxide reductase Ahp1 belongs to the Prx5 subfamily and is a two-cysteine (2-Cys) Prx that forms an intermolecular disulfide bond. Enzymatic assays and bioinformatics enabled us to re-assign the peroxidatic cysteine (C(P)) to Cys-62 and the resolving cysteine (C(R)) to Cys-31 but not the previously reported Cys-120. Thus Ahp1 represents the first 2-Cys Prx with a peroxidatic cysteine after the resolving cysteine in the primary sequence. We also found the positive cooperativity of the substrate t-butyl hydroperoxide binding to Ahp1 homodimer at a Hill coefficient of ∼2, which enabled Ahp1 to eliminate hydroperoxide at much higher efficiency. To gain the structural insights into the catalytic cycle of Ahp1, we determined the crystal structures of Ahp1 in the oxidized, reduced, and Trx2-complexed forms at 2.40, 2.91, and 2.10 Å resolution, respectively. Structural superposition of the oxidized to the reduced form revealed significant conformational changes at the segments containing C(P) and C(R). An intermolecular C(P)-C(R) disulfide bond crossing the A-type dimer interface distinguishes Ahp1 from other typical 2-Cys Prxs. The structure of the Ahp1-Trx2 complex showed for the first time how the electron transfers from thioredoxin to a peroxidase with a thioredoxin-like fold. In addition, site-directed mutagenesis in combination with enzymatic assays suggested that the peroxidase activity of Ahp1 would be altered upon the urmylation (covalently conjugated to ubiquitin-related modifier Urm1) of Lys-32.
Collapse
Affiliation(s)
- Fu-Ming Lian
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jiang Yu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiao-Xiao Ma
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiao-Jie Yu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
43
|
Qiu W, Dong A, Pizarro JC, Botchkarsev A, Min J, Wernimont AK, Hills T, Hui R, Artz JD. Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding. BMC STRUCTURAL BIOLOGY 2012; 12:2. [PMID: 22429898 PMCID: PMC3337327 DOI: 10.1186/1472-6807-12-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control.
Results
To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed Pv Trx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of Py Trx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of Py Prx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding.
Conclusions
The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group chemistry.
Collapse
|
44
|
Zeida A, Babbush R, Lebrero MCG, Trujillo M, Radi R, Estrin DA. Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: challenging the SN2 paradigm. Chem Res Toxicol 2012; 25:741-6. [PMID: 22303921 DOI: 10.1021/tx200540z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The oxidation of cellular thiol-containing compounds, such as glutathione and protein Cys residues, is considered to play an important role in many biological processes. Among possible oxidants, hydrogen peroxide (H(2)O(2)) is known to be produced in many cell types as a response to a variety of extracellular stimuli and could work as an intracellular messenger. This reaction has been reported to proceed through a S(N)2 mechanism, but despite its importance, the reaction is not completely understood at the atomic level. In this work, we elucidate the reaction mechanism of thiol oxidation by H(2)O(2) for a model methanethiolate system using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results show that the solvent plays a key role in positioning the reactants, that there is a significant charge redistribution in the first stages of the reaction, and that there is a hydrogen transfer process between H(2)O(2) oxygen atoms that occurs after reaching the transition state. These observations challenge the S(N)2 mechanism hypothesis for this reaction. Specifically, our results indicate that the reaction is driven by a tendency of the slightly charged peroxidatic oxygen to become even more negative in the product via an electrophilic attack on the negative sulfur atom. This is inconsistent with the S(N)2 mechanism, which predicts a protonated sulfenic acid and hydroxyl anion as stable intermediates. These intermediates are not found. Instead, the reaction proceeds directly to unprotonated sulfenic acid and water.
Collapse
Affiliation(s)
- Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal 2011; 15:795-815. [PMID: 20969484 PMCID: PMC3125576 DOI: 10.1089/ars.2010.3624] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/01/2010] [Accepted: 10/24/2010] [Indexed: 12/25/2022]
Abstract
Peroxiredoxins (Prxs), some of nature's dominant peroxidases, use a conserved Cys residue to reduce peroxides. They are highly expressed in organisms from all kingdoms, and in eukaryotes they participate in hydrogen peroxide signaling. Seventy-two Prx structures have been determined that cover much of the diversity of the family. We review here the current knowledge and show that Prxs can be effectively classified by a structural/evolutionary organization into six subfamilies followed by specification of a 1-Cys or 2-Cys mechanism, and for 2-Cys Prxs, the structural location of the resolving Cys. We visualize the varied catalytic structural transitions and highlight how they differ depending on the location of the resolving Cys. We also review new insights into the question of how Prxs are such effective catalysts: the enzyme activates not only the conserved Cys thiolate but also the peroxide substrate. Moreover, the hydrogen-bonding network created by the four residues conserved in all Prx active sites stabilizes the transition state of the peroxidatic S(N)2 displacement reaction. Strict conservation of the peroxidatic active site along with the variation in structural transitions provides a fascinating picture of how the diverse Prxs function to break down peroxide substrates rapidly.
Collapse
Affiliation(s)
- Andrea Hall
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Kimberly Nelson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
46
|
Poole LB, Hall A, Nelson KJ. Overview of peroxiredoxins in oxidant defense and redox regulation. CURRENT PROTOCOLS IN TOXICOLOGY 2011; Chapter 7:Unit7.9. [PMID: 21818754 PMCID: PMC3156475 DOI: 10.1002/0471140856.tx0709s49] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxiredoxins are important hydroperoxide detoxification enzymes, yet have only come to the fore in recent years relative to the other major players in peroxide detoxification, heme-containing catalases and peroxidases and glutathione peroxidases. These cysteine-dependent peroxidases exhibit high reactivity with hydrogen peroxide, organic hydroperoxides, and peroxynitrite and play major roles not only in peroxide defense, but also in regulating peroxide-mediated cell signaling. This overview focuses on important peroxiredoxin features that have emerged over the past several decades with an emphasis on catalytic mechanism, regulation, and biological function.
Collapse
Affiliation(s)
- Leslie B. Poole
- Dept. of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Andrea Hall
- Dept. of Biochemistry and Biophysics, Oregon State University, Corvallis, OR
| | - Kimberly J. Nelson
- Dept. of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
47
|
Abstract
Thiol peroxidases comprise glutathione peroxidases (GPx) and peroxiredoxins (Prx). The enzymes of both families reduce hydroperoxides with thiols by enzyme-substitution mechanisms. H(2)O(2) and organic hydroperoxides are reduced by all thiol peroxidases, most efficiently by SecGPxs, whereas fast peroxynitrite reduction is more common in Prxs. Reduction of lipid hydroperoxides is the domain of monomeric GPx4-type enzymes and of some Prxs. The catalysis starts with oxidation of an active-site selenocysteine (U(P)) or cysteine (C(P)). Activation of Cys (Sec) for hydroperoxide reduction in the GPx family is achieved by a typical tetrad composed of Cys (Sec), Asn, Gln, and Trp, whereas a triad of Cys Thr (or Ser) and Arg is the signature of Prx. In many of the CysGPxs and Prxs, a second Cys (C(R)) is required. In these 2-CysGPxs and 2-CysPrxs, the C(P) oxidized to a sulfenic acid forms an intra- or intermolecular disulfide (typical 2-CysPrx) with C(R), before a stepwise regeneration of ground-state enzyme by redoxin-type proteins can proceed. In SecGPxs and sporadically in Prxs, GSH is used as the reductant. Diversity combined with structural variability predestines thiol peroxidases for redox regulation via ROOH sensing and direct or indirect transduction of oxidant signals to specific protein targets.
Collapse
Affiliation(s)
- Leopold Flohé
- Otto-von-Guericke-Universität and MOLISA GmbH, Magdeburg, Germany.
| | | | | | | |
Collapse
|
48
|
Knoops B, Goemaere J, Van der Eecken V, Declercq JP. Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 2011; 15:817-29. [PMID: 20977338 DOI: 10.1089/ars.2010.3584] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxiredoxin 5 (PRDX5) was the last member to be identified among the six mammalian peroxiredoxins. It is also the unique atypical 2-Cys peroxiredoxin in mammals. Like the other five members, PRDX5 is widely expressed in tissues but differs by its surprisingly large subcellular distribution. In human cells, it has been shown that PRDX5 can be addressed to mitochondria, peroxisomes, the cytosol, and the nucleus. PRDX5 is a peroxidase that can use cytosolic or mitochondrial thioredoxins to reduce alkyl hydroperoxides or peroxynitrite with high rate constants in the 10(6) to 10(7) M(-1)s(-1) range, whereas its reaction with hydrogen peroxide is more modest, in the 10(5) M(-1)s(-1) range. PRDX5 crystal structures confirmed the proposed enzymatic mechanisms based on biochemical data but revealed also some specific unexpected structural features. So far, PRDX5 has been viewed mainly as a cytoprotective antioxidant enzyme acting against endogenous or exogenous peroxide attacks rather than as a redox sensor. Accordingly, overexpression of the enzyme in different subcellular compartments protects cells against death caused by nitro-oxidative stresses, whereas gene silencing makes them more vulnerable. Thus, more than 10 years after its molecular cloning, mammalian PRDX5 appears to be a unique peroxiredoxin exhibiting specific functional and structural features.
Collapse
Affiliation(s)
- Bernard Knoops
- Institut des Sciences de Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
49
|
Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins 2011; 79:947-64. [PMID: 21287625 PMCID: PMC3065352 DOI: 10.1002/prot.22936] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/13/2010] [Accepted: 10/25/2010] [Indexed: 12/25/2022]
Abstract
Peroxiredoxins (Prxs) are a widespread and highly expressed family of cysteine-based peroxidases that react very rapidly with H₂O₂, organic peroxides, and peroxynitrite. Correct subfamily classification has been problematic because Prx subfamilies are frequently not correlated with phylogenetic distribution and diverge in their preferred reductant, oligomerization state, and tendency toward overoxidation. We have developed a method that uses the Deacon Active Site Profiler (DASP) tool to extract functional-site profiles from structurally characterized proteins to computationally define subfamilies and to identify new Prx subfamily members from GenBank(nr). For the 58 literature-defined Prx test proteins, 57 were correctly assigned, and none were assigned to the incorrect subfamily. The >3500 putative Prx sequences identified were then used to analyze residue conservation in the active site of each Prx subfamily. Our results indicate that the existence and location of the resolving cysteine vary in some subfamilies (e.g., Prx5) to a greater degree than previously appreciated and that interactions at the A interface (common to Prx5, Tpx, and higher order AhpC/Prx1 structures) are important for stabilization of the correct active-site geometry. Interestingly, this method also allows us to further divide the AhpC/Prx1 into four groups that are correlated with functional characteristics. The DASP method provides more accurate subfamily classification than PSI-BLAST for members of the Prx family and can now readily be applied to other large protein families.
Collapse
Affiliation(s)
- Kimberly J. Nelson
- Department of Biochemistry, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem NC 27157
| | - Stacy T. Knutson
- Departments of Physics and Computer Science, Wake Forest University, Winston-Salem, NC 27109
| | - Laura Soito
- Department of Biochemistry, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem NC 27157
| | - Chananat Klomsiri
- Department of Biochemistry, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem NC 27157
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem NC 27157
| | - Jacquelyn S. Fetrow
- Departments of Physics and Computer Science, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
50
|
DeGennaro M, Hurd TR, Siekhaus DE, Biteau B, Jasper H, Lehmann R. Peroxiredoxin stabilization of DE-cadherin promotes primordial germ cell adhesion. Dev Cell 2011; 20:233-43. [PMID: 21316590 PMCID: PMC3712085 DOI: 10.1016/j.devcel.2010.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/10/2010] [Accepted: 12/10/2010] [Indexed: 11/22/2022]
Abstract
Regulated adhesion between cells and their environment is critical for normal cell migration. We have identified mutations in a gene encoding the Drosophila hydrogen peroxide (H₂O₂)-degrading enzyme Jafrac1, which lead to germ cell adhesion defects. During gastrulation, primordial germ cells (PGCs) associate tightly with the invaginating midgut primordium as it enters the embryo; however, in embryos from jafrac1 mutant mothers this association is disrupted, leaving some PGCs trailing on the outside of the embryo. We observed similar phenotypes in embryos from DE-cadherin/shotgun (shg) mutant mothers and were able to rescue the jafrac1 phenotype by increasing DE-cadherin levels. This and our biochemical evidence strongly suggest that Jafrac1-mediated reduction of H₂O₂ is required to maintain DE-cadherin protein levels in the early embryo. Our results present in vivo evidence of a peroxiredoxin regulating DE-cadherin-mediated adhesion.
Collapse
Affiliation(s)
- Matthew DeGennaro
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Ryan Hurd
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Daria Elisabeth Siekhaus
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Benoit Biteau
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|