1
|
Tsukatani Y, Azai C, Noji T, Kawai S, Sugimoto S, Shimamura S, Shimane Y, Harada J, Mizoguchi T, Tamiaki H, Masuda S. Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium. PLANT & CELL PHYSIOLOGY 2025; 66:204-213. [PMID: 39030709 DOI: 10.1093/pcp/pcae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to the absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061 Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Chihiro Azai
- Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Tomoyasu Noji
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585 Japan
| | - Shigeru Kawai
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061 Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Saori Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501 Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Yasuhiro Shimane
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501 Japan
| |
Collapse
|
2
|
Fufina TY, Zabelin AA, Khatypov RA, Khristin AM, Shkuropatov AY, Vasilieva LG. Comparative Study of Spectral and Functional Properties of Wild Type and Double Mutant H(L173)L/I(L177)H Reaction Centers of the Purple Bacterium Cereibacter sphaeroides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1789-1802. [PMID: 39523116 DOI: 10.1134/s0006297924100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Previously, we found that in the reaction center (RC) of the purple bacterium Cereibacter sphaeroides, formation of heterodimeric primary electron donor (P) caused by the substitution of His-L173 by Leu, was compensated by the second mutation Ile-L177 - His. Significant changes in the spectral properties, pigment composition, and redox potential of P observed in the H(L173)L RC, are restored to the corresponding characteristics of the native RC in the RC H(L173)L/I(L177)H, with the difference that the energy of the long-wavelength QY optical transition of P increases significantly (by ~75 meV). In this work, it was shown using light-induced difference FTIR spectroscopy that the homodimeric structure of P is preserved in the RC with double mutation with partially altered electronic properties: electronic coupling in the radical-cation of the P+ dimer is weakened and localization of the positive charge on one of its halves is increased. Results of the study of the triple mutant RC, H(L173)L/I(L177)H/F(M197)H, are consistent with the assumption that the observed changes in the P+ electronic structure, as well as considerable blue shift of the QY P absorption band in the RC H(L173)L/I(L177)H, are associated with modification of the spatial position and/or geometry of P. Using femtosecond transient absorption spectroscopy, it was shown that the mutant H(L173)L/I(L177)H RC retains a sequence of reactions P* → P+BA- → P+HA- → P+QA- with electron transfer rates and the quantum yield of the final state P+QA- close to those observed in the wild-type RC (P* is the singlet-excited state of P; BA, HA, and QA are molecules of bacteriochlorophyll, bacteriopheophytin, and ubiquinone in the active A-branch of cofactors, respectively). The obtained results, together with the previously published data for the RC with symmetrical double mutation H(M202)L/I(M206)H, demonstrate that by introducing additional point amino acid substitutions, photochemical activity of the isolated RC from C. sphaeroides could be maintained at a high level even in the absence of important structural elements - axial histidine ligands of the primary electron donor P.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anton M Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
3
|
Fufina TY, Selikhanov GK, Gabdulkhakov AG, Vasilieva LG. Properties and Crystal Structure of the Cereibacter sphaeroides Photosynthetic Reaction Center with Double Amino Acid Substitution I(L177)H + F(M197)H. MEMBRANES 2023; 13:157. [PMID: 36837660 PMCID: PMC9964780 DOI: 10.3390/membranes13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177-His and M197 Phe-His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond between the C2-acetyl carbonyl group of the bacteriochlorophyll PB and His-M197, which is known to enhance the stability of the complex. Due to this H-bond, π -electron system of P finds itself connected to an extensive H-bonding network on the periplasmic surface of the complex. The crystal structure of the double mutant reaction center obtained with 2.6 Å resolution allows clarifying consequences of the Ile L177 - His substitution. The value of the P/P+ midpoint potential in the double mutant RC was found to be ~20 mV less than the sum of potentials measured in the two RCs with single mutations I(L177)H and F(M197)H. The protein environment of the BChls PA and BB were found to be similar to that in the RC with single substitution I(L177)H, whereas an altered pattern of the H-bonding networks was found in the vicinity of bacteriochlorophyll PB. The data obtained are consistent with our previous assumption on a correlation between the bulk of the H-bonding network connected with the π-electron system of the primary electron donor P and the value of its oxidation potential.
Collapse
Affiliation(s)
- Tatiana Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| | - Georgii K. Selikhanov
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, 142290 Pushchino, Russia
| | - Azat G. Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya Street 4, 142290 Pushchino, Russia
| | - Lyudmila G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Allen JP, Chamberlain KD, Williams JC. Identification of amino acid residues in a proton release pathway near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2023; 155:23-34. [PMID: 36197600 DOI: 10.1007/s11120-022-00968-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Insight into control of proton transfer, a crucial attribute of cellular functions, can be gained from investigations of bacterial reaction centers. While the uptake of protons associated with the reduction of the quinone is well characterized, the release of protons associated with the oxidized bacteriochlorophyll dimer has been poorly understood. Optical spectroscopy and proton release/uptake measurements were used to examine the proton release characteristics of twelve mutant reaction centers, each containing a change in an amino acid residue near the bacteriochlorophyll dimer. The mutant reaction centers had optical spectra similar to wild-type and were capable of transferring electrons to the quinones after light excitation of the bacteriochlorophyll dimer. They exhibited a large range in the extent of proton release and in the slow recovery of the optical signal for the oxidized dimer upon continuous illumination. Key roles were indicated for six amino acid residues, Thr L130, Asp L155, Ser L244, Arg M164, Ser M190, and His M193. Analysis of the results points to a hydrogen-bond network that contains these residues, with several additional residues and bound water molecules, forming a proton transfer pathway. In addition to proton transfer, the properties of the pathway are proposed to be responsible for the very slow charge recombination kinetics observed after continuous illumination. The characteristics of this pathway are compared to proton transfer pathways near the secondary quinone as well as those found in photosystem II and cytochrome c oxidase.
Collapse
Affiliation(s)
- J P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - K D Chamberlain
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - J C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| |
Collapse
|
5
|
Zabelin AA, Kovalev VB, Shkuropatov AY. On the Mechanism of Selective Chemical Exchange of Bacteriopheophytins in the Reaction Centers of Rhodobacter sphaeroides R-26. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1119-1129. [PMID: 36273880 DOI: 10.1134/s0006297922100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
To elucidate the mechanism of site-selective chemical replacement of chromophores in the reaction centers (RCs) of photosynthetic bacteria by external pigments, we investigated how the efficiency of incorporation of plant pheophytin a (Pheo) into the binding sites for bacteriopheophytin a molecules (BPheo) in the isolated Rhodobacter sphaeroides R-26 RCs depended on the incubation medium temperature, Pheo aggregation state, and the presence of organic solvent (acetone). When Pheo was in a form of monomers in free detergent micelles in a water-detergent incubation medium, the degree of selective replacement of photochemically inactive BPheo HB molecules upon incubation of the RC/Pheo mixture at 5°C was ~15%. The exchange efficiency increased to 40% upon incubation at 25°C and reached 100% at the same temperature when 10% acetone was added to the incubation medium. At both 5 and 25°C, the degree of pigment exchange increased approximately twice, when a mixture of Pheo monomers and dimers in the presence of 10% acetone was used as the incubation medium. The removal of acetone from this medium with the preservation of pigment forms led to a significant decrease in the efficiency of Pheo incorporation. The effect of acetone on the pigment exchange was also observed at an elevated incubation temperature (43.5°C), when functionally active BPheo HA molecules were partially replaced. The results are discussed in terms of the mechanism according to which (i) the temperature-dependent internal movements of the RC protein facilitate the release of the BPheo molecule from the binding site with simultaneous insertion of the Pheo molecule into the same site in a coupled process, (ii) the role of temperature largely depends on the steric accessibility of binding pockets in the RC protein, (iii) the incorporation of Pheo occurs from a pool of monomeric molecules included in the RC-detergent micelles, and (iv) the presence of acetone in the incubation medium facilitates the exchange of Pheo monomers between micelles in the solution and the detergent belt of the RC complex.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Vyacheslav B Kovalev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
6
|
Fufina TY, Tretchikova OA, Khristin AM, Khatypov RA, Vasilieva LG. Properties of Mutant Photosynthetic Reaction Centers of Purple Non-Sulfur Bacteria Cereibacter sphaeroides with M206 Ile→Gln Substitution. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1149-1158. [PMID: 36273883 DOI: 10.1134/s000629792210008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 06/16/2023]
Abstract
In the structure of photosynthetic reaction center (RC) of the purple bacterium Cereibacter sphaeroides the highly conserved amino acid residue Ile-M206 is located near the bacteriochlorophyll dimer P, which is the primary electron donor, and the monomeric bacteriochlorophyll BA, which is the nearest electron acceptor. Since Ile-M206 is close to the C2-acetyl group of bacteriochlorophyll PB, the hydroxyl group of Tyr-M210, and to the C9-keto group of bacteriochlorophyll BA, as well as to the water molecule near the latter group, this site can be used for introducing mutations in order to study mechanisms of primary photochemical processes in the RC. Previously it was shown that the Ile→Glu substitution at the M204 position (analog of M206 in the RC of C. sphaeroides) in the RC of the closely related purple non-sulfur bacterium Rhodobacter capsulatus significantly affected kinetics of the P+HA- state formation, whereas the M204 Ile→Gln substitution led to the loss of BChl BA molecule from the complex structure. In the present work, it is shown that the single I(M206)Q or double I(M206)Q + F(M208)A amino acid substitutions in the RC of C. sphaeroides do not change the pigment composition and do not markedly influence redox potential of the primary electron donor. However, substitution of Ile M206 by Gln affected positions and amplitudes of the absorption bands of bacteriochlorophylls, increased lifetime of the primary electron donor P* excited state from 3.1 ps to 22 ps, and decreased quantum yield of the P+QA- state formation to 60%. These data suggest significant changes in the pigment-protein interactions in the vicinity of the primary electron donor P and the nearest electron acceptor BA. A considerable decrease was also noticed in the resistance of the mutant RC to thermal denaturation, which was more pronounced in the RC with the double substitution I(M206)Q + F(M208)A. This was likely associated with the disruption of the dense packing of the protein near bacteriochlorophylls PB and BA. Possible reasons for different effects of identical mutations on the properties of two highly homologous RCs from closely related purple non-sulfur bacteria are discussed.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Tretchikova
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anton M Khristin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
7
|
Capacity and kinetics of light-induced cytochrome oxidation in intact cells of photosynthetic bacteria. Sci Rep 2022; 12:14298. [PMID: 35995915 PMCID: PMC9395421 DOI: 10.1038/s41598-022-18399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Light-induced oxidation of the reaction center dimer and periplasmic cytochromes was detected by fast kinetic difference absorption changes in intact cells of wild type and cytochrome mutants (cycA, cytC4 and pufC) of Rubrivivax gelatinosus and Rhodobacter sphaeroides. Constant illumination from a laser diode or trains of saturating flashes enabled the kinetic separation of acceptor and donor redox processes, and the electron contribution from the cyt bc1 complex via periplasmic cytochromes. Under continuous excitation, concentrations of oxidized cytochromes increased in three phases where light intensity, electron transfer rate and the number of reduced cytochromes were the rate liming steps, respectively. By choosing suitable flash timing, gradual steps of cytochrome oxidation in whole cells were observed; each successive flash resulted in a smaller, damped oxidation. We attribute this damping to lowered availability of reduced cytochromes resulting from both exchange (unbinding/binding) of the cytochromes and electron transfer at the reaction center interface since a similar effect is observed upon deletion of genes encoding periplasmic cytochromes. In addition, we present a simple model to calculate the damping effect; application of this method may contribute to understanding the function of the diverse range of c-type cytochromes in the electron transport chains of anaerobic phototrophic bacteria.
Collapse
|
8
|
A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. Photochem Photobiol Sci 2021; 21:91-99. [PMID: 34850374 DOI: 10.1007/s43630-021-00142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
In this paper we report the design of hybrid reaction centers with a novel redox-active cofactor. Reaction centers perform the primary photochemistry of photosynthesis, namely the light-induced transfer of an electron from the bacteriochlorophyll dimer to a series of electron acceptors. Hybrid complexes were created by the fusion of an artificial four-helix bundle to the M-subunit of the reaction center. Despite the large modification, optical spectra show that the purified hybrid reaction centers assemble as active complexes that retain the characteristic cofactor absorption peaks and are capable of light-induced charge separation. The four-helix bundle could bind iron-protoporphyrin in either a reduced and oxidized state. After binding iron-protoporphyrin to the hybrid reaction centers, light excitation results in a new derivative signal with a maximum at 402 nm and minimum at 429 nm. This signal increases in amplitude with longer light durations and persists in the dark. No signal is observed when iron-protoporphyrin is added to reaction centers without the four-helix bundle domain or when a redox-inactive zinc-protoporphyrin is bound. The results are consistent with the signal arising from a new redox reaction, electron transfer from the iron-protoporphyrin to the oxidized bacteriochlorophyll dimer. These outcomes demonstrate the feasibility of binding porphyrins to the hybrid reaction centers to gain new light-driven functions.
Collapse
|
9
|
Zabelin AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Spectral and Photochemical Properties of Rhodobacter sphaeroides R-26 Reaction Center Films in Vacuum. BIOCHEMISTRY (MOSCOW) 2019; 84:1107-1115. [PMID: 31693470 DOI: 10.1134/s000629791909013x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using absorption spectroscopy in the visible/near-IR and mid-IR regions, spectral and photochemical properties of isolated reaction centers (RCs) from Rhodobacter sphaeroides R-26 were studied in dried films on the inorganic support surface (quartz or CaF2 plates) under vacuum dehydration conditions (10-2 or 7·10-5 mm Hg). Three detergents, N,N-dimethyldodecylamine N-oxide (LDAO), Triton X-100 (TX100), and n-dodecyl-β-D-maltoside (DM), were tested for their ability to stabilize the RC-detergent complexes in the vacuum-dried state. It was shown that in the presence of LDAO, RC complexes underwent destruction in vacuum. In contrast, DM provided an environment that minimized irreversible disruptive changes in the RCs in vacuum. The effects of vacuum dehydration on the RC-DM films included a small increase in the content of α-helices in the RC protein, a short-wavelength reversible shift in the optical transitions of pigments, and minor changes in the electronic structure of the P+ dimer. The films retained their photochemical activity upon excitation with high-intensity light (200 mW/cm2). TX100 also helped to maintain spectral and functional properties of the RCs in vacuum; however, in this case, the stabilizing effect was less pronounced than in the presence of DM, especially, at high detergent concentrations. The results are discussed within the framework of a model suggesting that the detergent-protein interactions and the properties of detergent micelles play a dominant role in maintaining the structure of the RCs upon vacuum dehydration of the RC complexes. The obtained data can be useful for developing hybrid photoconverting systems based on bacterial RCs.
Collapse
Affiliation(s)
- A A Zabelin
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V A Shkuropatova
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - V A Shuvalov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - A Ya Shkuropatov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
10
|
Fufina TY, Vasilieva LG, Gabdulkhakov AG, Shuvalov VA. The L(M196)H mutation in Rhodobacter sphaeroides reaction center results in new electrostatic interactions. PHOTOSYNTHESIS RESEARCH 2015; 125:23-29. [PMID: 25480338 DOI: 10.1007/s11120-014-0062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
New histidine residue was introduced in M196 position in the reaction center of Rhodobacter sphaeroides in order to alter polarity of the BChl dimer's protein environment and to study how it affects properties and structure of the primary electron donor P. It was shown that in the absorption spectrum of the mutant RC the 6 nm red shift of the Q Y P band was observed together with considerable decrease of its amplitude. The mid-point potential of P/P (+) in the mutant RC was increased by +65 (±15) mV as compared to the E m P/P (+) value in the wild-type RC suggesting that the mutation resulted in new pigment-protein interactions. Crystal structure of RC L(M196)H determined at 2.4 Å resolution implies that BChl Р В and introduced histidine-M196 organize new electrostatic contact that may be specified either as π-π staking or as hydrogen-π interaction. Besides, the structure of the mutants RC shows that His-M196 apparently became involved in hydrogen bond network existing in BChl Р В vicinity that may favor stability of the mutant RC.
Collapse
Affiliation(s)
- Tatiana Y Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | |
Collapse
|
11
|
Vasilieva LG, Fufina TY, Gabdulkhakov AG, Shuvalov VA. Different effects of identical symmetry-related mutations near the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides. BIOCHEMISTRY (MOSCOW) 2015; 80:647-53. [DOI: 10.1134/s0006297915060012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kimura Y, Kawakami T, Yu LJ, Yoshimura M, Kobayashi M, Wang-Otomo ZY. Characterization of the quinones in purple sulfur bacteriumThermochromatium tepidum. FEBS Lett 2015; 589:1761-5. [DOI: 10.1016/j.febslet.2015.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/27/2022]
|
13
|
Exchange and complementation of genes coding for photosynthetic reaction center core subunits among purple bacteria. J Mol Evol 2014; 79:52-62. [PMID: 25080366 DOI: 10.1007/s00239-014-9634-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
A mutant of the phototrophic species belonging to the β-proteobacteria, Rubrivivax gelatinosus, lacking the photosynthetic growth ability was constructed by the removal of genes coding for the L, M, and cytochrome subunits of the photosynthetic reaction center complex. The L, M, and cytochrome genes derived from five other species of proteobacteria, Acidiphilium rubrum, Allochromatium vinosum, Blastochloris viridis, Pheospirillum molischianum, and Roseateles depolymerans, and the L and M subunits from two other species, Rhodobacter sphaeroides and Rhodopseudomonas palustris, respectively, have been introduced into this mutant. Introduction of the genes from three of these seven species, Rte. depolymerans, Ach. vinosum, and Psp. molischianum, restored the photosynthetic growth ability of the mutant of Rvi. gelatinosus, although the growth rates were 1.5, 9.4, and 10.7 times slower, respectively, than that of the parent strain. Flash-induced kinetic measurements for the intact cells of these three mutants showed that the photo-oxidized cytochrome c bound to the introduced reaction center complex could be rereduced by electron donor proteins of Rvi. gelatinosus with a t1/2 of less than 10 ms. The reaction center core subunits of photosynthetic proteobacteria appear to be exchangeable if the sequence identities of the LM core subunits between donor and acceptor species are high enough, i.e., 70% or more.
Collapse
|
14
|
Onidas D, Sipka G, Asztalos E, Maróti P. Mutational control of bioenergetics of bacterial reaction center probed by delayed fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:1191-9. [PMID: 23685111 DOI: 10.1016/j.bbabio.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/01/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
The free energy gap between the metastable charge separated state P(+)QA(-) and the excited bacteriochlorophyll dimer P* was measured by delayed fluorescence of the dimer in mutant reaction center proteins of the photosynthetic bacterium Rhodobacter sphaeroides. The mutations were engineered both at the donor (L131L, M160L, M197F and M202H) and acceptor (M265I and M234E) sides. While the donor side mutations changed systematically the number of H-bonds to P, the acceptor side mutations modified the energetics of QA by altering the van-der-Waals and electronic interactions (M265IT) and H-bond network to the acidic cluster around QB (M234EH, M234EL, M234EA and M234ER). All mutants decreased the free energy gap of the wild type RC (~890meV), i.e. destabilized the P(+)QA(-) charge pair by 60-110meV at pH8. Multiple modifications in the hydrogen bonding pattern to P resulted in systematic changes of the free energy gap. The destabilization showed no pH-dependence (M234 mutants) or slight increase (WT, donor-side mutants and M265IT above pH8) with average slope of 10-15meV/pH unit over the 6-10.5pH range. In wild type and donor-side mutants, the free energy change of the charge separation consisted of mainly enthalpic term but the acceptor side mutants showed increased entropic (even above that of enthalpic) contributions. This could include softening the structure of the iron ligand (M234EH) and the QA binding pocket (M265IT) and/or increase of the multiplicity of the electron transfer of charge separation in the acceptor side upon mutation.
Collapse
Affiliation(s)
- Delphine Onidas
- Laboratoire de Chimie Physique UMR 8000, Batiment 350, Orsay-Cedex, Université de Paris-Sud, 91405, France
| | | | | | | |
Collapse
|
15
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pan J, Lin S, Allen JP, Williams JC, Frank HA, Woodbury NW. Carotenoid Excited-State Properties in Photosynthetic Purple Bacterial Reaction Centers: Effects of the Protein Environment. J Phys Chem B 2011; 115:7058-68. [DOI: 10.1021/jp200077e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Pan
- The Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
| | - Su Lin
- The Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - JoAnn C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Neal W. Woodbury
- The Biodesign Institute at Arizona State University, Arizona State University, Tempe, Arizona 85287-5201, United States
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|