1
|
Mihai A, Roy S, Krangel MS, Zhuang Y. E protein binding at the Tcra enhancer promotes Tcra repertoire diversity. Front Immunol 2023; 14:1188738. [PMID: 37483636 PMCID: PMC10358851 DOI: 10.3389/fimmu.2023.1188738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
V(D)J recombination of antigen receptor loci is a highly developmentally regulated process. During T lymphocyte development, recombination of the Tcra gene occurs in CD4+CD8+ double positive (DP) thymocytes and requires the Tcra enhancer (Eα). E proteins are known regulators of DP thymocyte development and have three identified binding sites in Eα. To understand the contribution of E proteins to Eα function, mutants lacking one or two of the respective binding sites were generated. The double-binding site mutant displayed a partial block at the positive selection stage of αβ T cell development. Further investigation revealed loss of germline transcription within the Tcra locus at the Jα array, along with dysregulated primary and impaired secondary Vα-Jα rearrangement. Eα E protein binding increases Tcra locus accessibility and regulates TCRα recombination, thus directly promoting Tcra repertoire diversity.
Collapse
Affiliation(s)
| | | | - Michael S. Krangel
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | | |
Collapse
|
2
|
Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T cell fate. Nat Rev Immunol 2021; 21:162-176. [PMID: 32918063 PMCID: PMC7933071 DOI: 10.1038/s41577-020-00426-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/21/2022]
Abstract
Recent evidence has elucidated how multipotent blood progenitors transform their identities in the thymus and undergo commitment to become T cells. Together with environmental signals, a core group of transcription factors have essential roles in this process by directly activating and repressing specific genes. Many of these transcription factors also function in later T cell development, but control different genes. Here, we review how these transcription factors work to change the activities of specific genomic loci during early intrathymic development to establish T cell lineage identity. We introduce the key regulators and highlight newly emergent insights into the rules that govern their actions. Whole-genome deep sequencing-based analysis has revealed unexpectedly rich relationships between inherited epigenetic states, transcription factor-DNA binding affinity thresholds and influences of given transcription factors on the activities of other factors in the same cells. Together, these mechanisms determine T cell identity and make the lineage choice irreversible.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang X, Rothenberg EV. Illuminating the core of adaptive immunity-how the regulatory genome controls Rag chromatin dynamics. Sci Immunol 2020; 5:eabd6427. [PMID: 32887844 DOI: 10.1126/sciimmunol.abd6427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/02/2022]
Abstract
E2A specifies adaptive immunity by instructing large-scale topological changes for Rag gene super-enhancer formation (see the related Research Article by Miyazaki et al.).
Collapse
Affiliation(s)
- Xun Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Graduate Program in Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci 2015; 72:2305-21. [PMID: 25702312 PMCID: PMC11113633 DOI: 10.1007/s00018-015-1864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/22/2015] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.
Collapse
Affiliation(s)
- Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences and Barcelona Biomedical Research Park, Universitat Pompeu Fabra, C/Doctor Aiguader Nº88, 08003, Barcelona, Barcelona, Spain,
| | | | | |
Collapse
|
6
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
7
|
Engel I, Kronenberg M. Transcriptional control of the development and function of Vα14i NKT cells. Curr Top Microbiol Immunol 2014; 381:51-81. [PMID: 24839184 DOI: 10.1007/82_2014_375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of T lymphocytes, sometimes referred to as as mainstream or conventional T cells, are characterized by a diverse T cell antigen receptor (TCR) repertoire. They require antigen priming in order to become memory cells capable of mounting a rapid effector response. It has become established, however, that there are several distinct T cell lineages that exhibit a memory phenotype in the absence of antigen priming, even as they differentiate in the thymus. These lymphocytes typically express a markedly restricted TCR repertoire and their rapid response kinetics has led to their being described as innate-like T cells. In addition, several of these subsets typically express surface markers commonly found on natural killer cells, which has led to the moniker natural killer T cells (NKT cells). This review will describe our current understanding of the unique ways whereby transcription factors control the development and function of an abundant and widely studied lineage of NKT cells that recognizes glycolipid antigens.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
8
|
Kondilis-Mangum HD, Wade PA. Epigenetics and the adaptive immune response. Mol Aspects Med 2013; 34:813-25. [PMID: 22789989 PMCID: PMC3508324 DOI: 10.1016/j.mam.2012.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 01/31/2023]
Abstract
Cells of the adaptive immune response undergo dynamic epigenetic changes as they develop and respond to immune challenge. Plasticity is a necessary prerequisite for the chromosomal dynamics of lineage specification, development, and the immune effector function of the mature cell types. The alterations in DNA methylation and histone modification that characterize activation may be integral to the generation of immunologic memory, thereby providing an advantage on secondary exposure to pathogens. While the immune system benefits from the dynamic nature of the epigenome, such benefit comes at a cost - increased likelihood of disease-causing mutation.
Collapse
Affiliation(s)
- Hrisavgi D Kondilis-Mangum
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
9
|
Li P, Xiao Y, Liu Z, Liu P. Using mouse models to study function of transcriptional factors in T cell development. CELL REGENERATION (LONDON, ENGLAND) 2012; 1:8. [PMID: 25408871 PMCID: PMC4230505 DOI: 10.1186/2045-9769-1-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/08/2012] [Indexed: 02/03/2023]
Abstract
Laboratory mice have widely been used as tools for basic biological research and models for studying human diseases. With the advances of genetic engineering and conditional knockout (CKO) mice, we now understand hematopoiesis is a dynamic stepwise process starting from hematopoietic stem cells (HSCs) which are responsible for replenishing all blood cells. Transcriptional factors play important role in hematopoiesis. In this review we compile several studies on using genetic modified mice and humanized mice to study function of transcriptional factors in lymphopoiesis, including T lymphocyte and Natural killer (NK) cell development. Finally, we focused on the key transcriptional factor Bcl11b and its function in regulating T cell specification and commitment.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Zhixin Liu
- Key Laboratory of Regenerative Biology, Guangzchou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China ; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH UK
| |
Collapse
|
10
|
Jones ME, Zhuang Y. Stage-specific functions of E-proteins at the β-selection and T-cell receptor checkpoints during thymocyte development. Immunol Res 2011; 49:202-15. [PMID: 21128008 DOI: 10.1007/s12026-010-8182-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The E-protein transcription factors E2A and HEB function in a lineage- and stage-specific manner to orchestrate many critical events throughout lymphocyte development. The function of E-proteins in both B- and T-lymphocyte development has been extensively studied through the use of single-gene knockout animals. Unlike B cells, which rely primarily on E2A alone, T cells are regulated by the combinatorial expression of both E2A and HEB. Therefore, many of the roles of E-proteins during T-cell development may be masked in single-gene knockout studies due to the compensatory function of E2A and HEB. More recently, our laboratory has established double-conditional knockout models to eliminate both E2A and HEB in a stage-specific manner throughout T-cell development. These models, in combination with other complimentary genetic approaches, have identified new E-protein functions at each of the two major T-cell developmental checkpoints. Here, we will discuss how E-proteins function to regulate the expression of T-cell receptor components and cell cycle at the β-selection checkpoint, and how they control positive selection, survival, and lineage-specific gene expression at the subsequent T-cell receptor checkpoint.
Collapse
Affiliation(s)
- Mary Elizabeth Jones
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC 27710, USA.
| | | |
Collapse
|
11
|
Abstract
The development of T cells in the thymus involves several differentiation and proliferation events, during which hematopoietic precursors give rise to T cells ready to respond to antigen stimulation and undergo effector differentiation. This review addresses signaling and transcriptional checkpoints that control the intrathymic journey of T cell precursors. We focus on the divergence of alphabeta and gammadelta lineage cells and the elaboration of the alphabeta T cell repertoire, with special emphasis on the emergence of transcriptional programs that direct lineage decisions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage
- Gene Expression Regulation/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transcription, Genetic/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|