1
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
2
|
Clonally stable Vκ allelic choice instructs Igκ repertoire. Nat Commun 2017; 8:15575. [PMID: 28555639 PMCID: PMC5459994 DOI: 10.1038/ncomms15575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/07/2017] [Indexed: 12/30/2022] Open
Abstract
Although much has been done to understand how rearrangement of the Igκ locus is regulated during B-cell development, little is known about the way the variable (V) segments themselves are selected. Here we show, using B6/Cast hybrid pre-B-cell clones, that a limited number of V segments on each allele is stochastically activated as characterized by the appearance of non-coding RNA and histone modifications. The activation states are clonally distinct, stable across cell division and developmentally important in directing the Ig repertoire upon differentiation. Using a new approach of allelic ATAC-seq, we demonstrate that the Igκ V alleles have differential chromatin accessibility, which may serve as the underlying basis of clonal maintenance at this locus, as well as other instances of monoallelic expression throughout the genome. These findings highlight a new level of immune system regulation that optimizes gene diversity. B cell development involves sequential rearrangement of the immunoglobulin chains, but fine control over the selection process remains a mystery. Here the authors show that individual alleles in pre-B cells are clonally unique and result from stochastic activation of V gene segments to induce optimal generation of a diverse repertoire.
Collapse
|
3
|
Hauser J, Grundström C, Kumar R, Grundström T. Regulated localization of an AID complex with E2A, PAX5 and IRF4 at the Igh locus. Mol Immunol 2016; 80:78-90. [DOI: 10.1016/j.molimm.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
|
4
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
5
|
Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 2014; 111:5153-8. [PMID: 24706856 DOI: 10.1073/pnas.1324022111] [Citation(s) in RCA: 361] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.
Collapse
|
6
|
Hauser J, Grundström C, Grundström T. Allelic exclusion of IgH through inhibition of E2A in a VDJ recombination complex. THE JOURNAL OF IMMUNOLOGY 2014; 192:2460-70. [PMID: 24470503 DOI: 10.4049/jimmunol.1302216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A key feature of the immune system is the paradigm that one lymphocyte has only one Ag specificity that can be selected for or against. This requires that only one of the alleles of genes for AgR chains is made functional. However, the molecular mechanism of this allelic exclusion has been an enigma. In this study, we show that B lymphocytes with E2A that cannot be inhibited by calmodulin are dramatically defective in allelic exclusion of the IgH locus. Furthermore, we provide data supporting that E2A, PAX5, and the RAGs are in a VDJ recombination complex bound to key sequences on the Igh gene. We show that pre-BCR activation releases the VDJ recombination complex through calmodulin binding to E2A. We also show that pre-BCR signaling downregulates several components of the recombination machinery, including RAG1, RAG2, and PAX5, through calmodulin inhibition of E2A.
Collapse
Affiliation(s)
- Jannek Hauser
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
7
|
Bonifer C. Why detailed model gene studies in higher eukaryotes are still necessary. Immunology 2013; 139:158-60. [PMID: 23311893 DOI: 10.1111/imm.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/30/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
Abstract
Alterations in gene expression programmes are controlled by sequence-specific DNA-binding proteins that interact with the epigenetic regulatory machinery. The sum of such processes comprises a gene regulatory network and differentiation processes involve transitions between such networks. However, while great progress has been made to identify network components, this list is not complete, and we still do not fully understand how they work together. In this article, I argue that one reason for this lack of knowledge is the fact that we still do not understand what controls the cell stage and cell state-specific regulation of individual genes and review examples highlighting this notion.
Collapse
Affiliation(s)
- Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
8
|
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a severe premature aging syndrome that affects children. These children display characteristics associated with normal aging and die young usually from cardiovascular problems or stroke. Classical HGPS is caused by mutations in the gene encoding the nuclear structural protein lamin A. This mutation leads to a novel version of lamin A that retains a farnesyl group from its processing. This protein is called Progerin and is toxic to cellular function. Pre-lamin A is an immature version of lamin A and also has a farnesylation modification, which is cleaved in the maturation process to create lamin A.
Collapse
Affiliation(s)
- Joanna M Bridger
- Centre of Cell & Chromosome Biology, Brunel Institute of Ageing Studies, Brunel University, London, UK.
| | | | | | | | | |
Collapse
|
9
|
Danilova N, Saunders HL, Ellestad KK, Magor BG. The zebrafish IgH locus contains multiple transcriptional regulatory regions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:352-9. [PMID: 21055416 PMCID: PMC3031712 DOI: 10.1016/j.dci.2010.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 05/06/2023]
Abstract
Many fish have, in addition to IgM and IgD, a third isotype called IgZ or IgT. The ζ-chain locus is embedded among the Ig heavy chain V-, D- and J-elements in a manner reminiscent of the TcR δ/α locus. Isotype selection thus occurs during VDJ recombination, a process that is facilitated by intralocus transcription. Using in silico analyses and enhancer reporter vectors we identified 3 new regions within the zebrafish IgH locus through which transcription can be activated in catfish B-cell lines. Two of these, termed Eζi (Jζ to Cζ1 intronic) and Eζ3' regions flank the ζ-chain constant domain exons. A third region, Eδ3', resides downstream of the δ-chain exons. All regions contain predicted binding sites for transcription factors that contribute to B-cell specific transcription in fish and mammals. Each region also has proximal matrix attachment regions, which may further contribute to transcriptional activation and chromatin remodeling. We discuss possible roles for these regions during VDJ recombination.
Collapse
Affiliation(s)
- N. Danilova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - H. L. Saunders
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| | - K. K. Ellestad
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| | - B. G. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, T6G-2E5 Canada
| |
Collapse
|
10
|
Abstract
V(D)J recombination assembles antigen receptor genes from germline V, D and J segments during lymphocyte development. In αβT-cells, this leads to the subsequent expression of T-cell receptor (TCR) β and α chains. Generally, V(D)J recombination is closely controlled at various levels, including cell-type and cell-stage specificities, order of locus/gene segment recombination, and allele usage to mediate allelic exclusion. Many of these controls rely on the modulation of gene accessibility to the recombination machinery, involving not only biochemical changes in chromatin arrangement and structural modifications of chromosomal organization and positioning, but also the refined composition of the recombinase targets, the so-called recombination signal sequences. Here, we summarize current knowledge regarding the regulation of V(D)J recombination at the Tcrb gene locus, certainly one for which these various levels of control and regulatory components have been most extensively investigated.
Collapse
|
11
|
Abstract
Spatial organization of the genome is non-random. Preferential chromatin interactions, both in cis and in trans and between transcriptionally active and silent regions, influence organization.
Collapse
Affiliation(s)
- Nathan F Cope
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Peter Fraser
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Christopher H Eskiw
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
12
|
Spicuglia S, Zacarias-Cabeza J, Pekowska A, Ferrier P. Epigenetic regulation of antigen receptor gene rearrangement. F1000 BIOLOGY REPORTS 2010; 2:23. [PMID: 20948810 PMCID: PMC2948343 DOI: 10.3410/b2-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
V(D)J recombination assembles antigen-specific immunoglobulin and T-cell receptor variable region genes from germline V, D, and J segments during lymphocyte development. Regulation of this site-specific DNA rearrangement process occurs with respect to the cell type and stage of differentiation, order of locus recombination, and allele usage. Many of these controls are mediated via the modulation of gene accessibility to the V(D)J recombinase. Here, we summarise recent advances regarding the impact of nuclear organisation and epigenetic-based mechanisms on the regulation of V(D)J recombination.
Collapse
Affiliation(s)
- Salvatore Spicuglia
- Centre d'Immunologie de Marseille-Luminy, Université Aix MarseilleMarseilleFrance
- CNRSUMR6102, MarseilleFrance
- InsermU631, MarseilleFrance
| | - Joaquin Zacarias-Cabeza
- Centre d'Immunologie de Marseille-Luminy, Université Aix MarseilleMarseilleFrance
- CNRSUMR6102, MarseilleFrance
- InsermU631, MarseilleFrance
| | - Aleksandra Pekowska
- Centre d'Immunologie de Marseille-Luminy, Université Aix MarseilleMarseilleFrance
- CNRSUMR6102, MarseilleFrance
- InsermU631, MarseilleFrance
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Université Aix MarseilleMarseilleFrance
- CNRSUMR6102, MarseilleFrance
- InsermU631, MarseilleFrance
| |
Collapse
|