1
|
Sheu ML, Pan LY, Yang CN, Sheehan J, Pan LY, You WC, Wang CC, Chen HS, Pan HC. Neuronal Death Caused by HMGB1-Evoked via Inflammasomes from Thrombin-Activated Microglia Cells. Int J Mol Sci 2023; 24:12664. [PMID: 37628850 PMCID: PMC10454604 DOI: 10.3390/ijms241612664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Microglial cells are a macrophage-like cell type residing within the CNS. These cells evoke pro-inflammatory responses following thrombin-induced brain damage. Inflammasomes, which are large caspase-1-activating protein complexes, play a critical role in mediating the extracellular release of HMGB1 in activated immune cells. The exact role of inflammasomes in microglia activated by thrombin remains unclear, particularly as it relates to the downstream functions of HMGB1. After receiving microinjections of thrombin, Sprague Dawley rats of 200 to 250 gm were studied in terms of behaviors and immunohistochemical staining. Primary culture of microglia cells and BV-2 cells were used for the assessment of signal pathways. In a water maze test and novel object recognition analysis, microinjections of thrombin impaired rats' short-term and long-term memory, and such detrimental effects were alleviated by injecting anti-HMGB-1 antibodies. After thrombin microinjections, the increased oxidative stress of neurons was aggravated by HMGB1 injections but attenuated by anti-HMGB-1 antibodies. Such responses occurred in parallel with the volume of activated microglia cells, as well as their expressions of HMGB-1, IL-1β, IL-18, and caspase-I. In primary microglia cells and BV-2 cell lines, thrombin also induced NO release and mRNA expressions of iNOS, IL-1β, IL-18, and activated caspase-I. HMGB-1 aggravated these responses, which were abolished by anti-HMGB-1 antibodies. In conclusion, thrombin induced microglia activation through triggering inflammasomes to release HMGB1, contributing to neuronal death. Such an action was counteracted by the anti-HMGB-1 antibodies. The refinement of HMGB-1 modulated the neuro-inflammatory response, which was attenuated in thrombin-associated neurodegenerative disorder.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Liang-Yi Pan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Ning Yang
- Department of Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22904, USA;
| | - Liang-Yu Pan
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 40210, Taiwan;
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan;
| | - Hong-Shiu Chen
- Department of Neurosurgery, Tungs’ Taichung Metro-Harbor Hospital, Taichung 40210, Taiwan;
| | - Hung-Chuan Pan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung 40210, Taiwan
| |
Collapse
|
2
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Moeser A, Lerche M, Wirtz H, Stallmach A. [Aspects of pulmonary involvement in inflammatory bowel disease]. Internist (Berl) 2018; 59:876-885. [PMID: 30116854 DOI: 10.1007/s00108-018-0473-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The incidence of pulmonary manifestations of inflammatory bowel disease (IBD) appears to be much higher than previously assumed. In prospective studies, subclinical pulmonary interstitial infiltrates or pathological lung function were found in 40%-60% of IBD patients, both in children and adults. Pulmonary disorders can affect any part of the respiratory system, the most frequent pattern being inflammation of the large airways often associated with bronchiectasis. The differential diagnosis should include drug-related pulmonary disease and infectious causes when receiving immunosuppressive therapy. The diagnostic approach consists of a thorough history and clinical status as well as lung function tests including body plethysmography and high-resolution computed tomography of the thorax. Bronchoscopy with broncheoalveolar lavage and sample collection for histology as well as exclusion of pulmonary embolism may be indicated. Pulmonary disease in association with IBD can develop at any time during the course of IBD: in rare cases, symptoms can evolve even before gastrointestinal symptoms appear. On the other hand, there are frequent reports on the occurrence of pulmonary inflammation after proctocolectomy in patients with ulcerative colitis. The pathophysiologic background is largely unknown, but there seems to be an interaction between gastrointestinal and pulmonary inflammation. The mainstay of therapy are inhaled or systemic corticosteroids. Most patterns of pulmonary involvement in IBD respond well to corticosteroid therapy. Rarely, serious and persisting complications occur, such as strictures or stenosis of the large airways.
Collapse
Affiliation(s)
- A Moeser
- Institut für Infektionsmedizin und Krankenhaushygiene, Klinik für Innere Medizin/FB Pneumologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Deutschland.
| | - M Lerche
- Abteilung für Pneumologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | - H Wirtz
- Abteilung für Pneumologie, Universitätsklinikum Leipzig, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - A Stallmach
- Klinik für Innere Medizin IV, Universitätsklinikum Jena, Am Klinikum 1, Jena, Deutschland
| |
Collapse
|
5
|
Val-Blasco A, Prieto P, Gonzalez-Ramos S, Benito G, Vallejo-Cremades MT, Pacheco I, González-Peramato P, Agra N, Terrón V, Delgado C, Martín-Sanz P, Boscá L, Fernández-Velasco M. NOD1 activation in cardiac fibroblasts induces myocardial fibrosis in a murine model of type 2 diabetes. Biochem J 2017; 474:399-410. [PMID: 27803247 DOI: 10.1042/bcj20160556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/13/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis and chronic inflammation are common complications in type 2 diabetes mellitus (T2D). Since nucleotide oligomerization-binding domain 1 (NOD1), an innate immune receptor, is involved in the pathogenesis of insulin resistance and diabetes outcomes, we sought to investigate its involvement in cardiac fibrosis. Here, we show that selective staining of cardiac fibroblasts from T2D (db/db;db) mice exhibits up-regulation and activation of the NOD1 pathway, resulting in enhanced NF-κB and TGF-β signalling. Activation of the TGF-β pathway in cardiac fibroblasts from db mice was prevented after inhibition of NF-κB with BAY-11-7082 (BAY). Moreover, fibrosis progression in db mice was also prevented by BAY treatment. Enhanced TGF-β signalling and cardiac fibrosis of db mice was dependent, at least in part, on the sequential activation of NOD1 and NF-κB since treatment of db mice with a selective NOD1 agonist induced activation of the TGF-β pathway, but co-administration of a NOD1 agonist plus BAY, or a NOD1 inhibitor prevented the NOD1-induced fibrosis. Therefore, NOD1 is involved in cardiac fibrosis associated with diabetes, and establishes a new mechanism for the development of heart fibrosis linked to T2D.
Collapse
Affiliation(s)
- Almudena Val-Blasco
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Silvia Gonzalez-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Gemma Benito
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | | | | | - Pilar González-Peramato
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| | - Noelia Agra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Verónica Terrón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC-UAM), Arturo Duperier 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Fernández-Velasco
- Instituto de Investigación Hospital Universitario la PAZ, IdIPAZ, Paseo de la Castellana, Madrid 28046, Spain
| |
Collapse
|
6
|
Pranculienė G, Steponaitienė R, Skiecevičienė J, Kučinskienė R, Kiudelis G, Adamonis K, Labanauskas L, Kupčinskas L. Associations between NOD2, IRGM and ORMDL3 polymorphisms and pediatric-onset inflammatory bowel disease in the Lithuanian population. MEDICINA-LITHUANIA 2016; 52:325-330. [PMID: 27932194 DOI: 10.1016/j.medici.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Recent GWAS and meta-analyses have revealed about 200 susceptibility genes/loci for inflammatory bowel diseases (IBD). However, only a small number of studies were performed in early-onset IBD. The aim of this study was to assess the association between NOD2, IL23R, ATG16L1, IRGM, IL10, NKX2-3 and ORMDL3 variants and early-onset IBD. MATERIALS AND METHODS A total of 76 affected individuals (30 with Crohn's disease [CD] and 46 with ulcerative colitis [UC]) at the age of ≤17 years and 158 matched controls recruited in Lithuania were genotyped for the known genetic susceptibility variants in NOD2 (Arg702Trp (rs2066844), Gly908Arg (rs2066845) and Leu1007insC (rs2066847)), IL23R (rs11209026), ATG16L1 (rs2241880), IRGM (rs4958847), IL10 (rs3024505), NKX2-3 (rs11190140) and ORMDL3 (rs2872507) genes. RESULTS Variants in NOD2 (Leu1007insC) and IRGM genes increased risk for CD (OR=6.56, 95% CI: 2.54-16.91, P=1.21×10-5 and OR=2.32, 95% CI: 1.05-5.14, P=0.033; respectively); whereas a variant in ORMDL3 gene was strongly associated with UC (OR=1.99, 95% CI: 1.23-3.20, P=4.15×10-3). CONCLUSIONS The results confirmed that polymorphisms in NOD2 (Leu1007insC) and IRGM genes are associated with increased risk of CD; whereas the ORMDL3 variant is associated with susceptibility to UC in the Lithuanian early-onset IBD population.
Collapse
Affiliation(s)
- Gitana Pranculienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Steponaitienė
- Laboratory of Clinical and Molecular Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skiecevičienė
- Laboratory of Clinical and Molecular Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Kučinskienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gediminas Kiudelis
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kęstutis Adamonis
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Liutauras Labanauskas
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Limas Kupčinskas
- Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
7
|
Elia PP, Tolentino YFM, Bernardazzi C, de Souza HSP. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediators Inflamm 2015; 2015:936193. [PMID: 25821356 PMCID: PMC4364059 DOI: 10.1155/2015/936193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
Innate immunity constitutes the first line of defense, fundamental for the recognition and the initiation of an inflammatory response against microorganisms. The innate immune response relies on the sensing of microbial-associated molecular patterns through specialized structures such as toll-like receptors (TLRs) and the nucleotide oligomerization domain- (NOD-) like receptors (NLRs). In the gut, these tasks are performed by the epithelial barrier and the presence of adaptive and innate immune mechanisms. TLRs and NLRs are distributed throughout the gastrointestinal mucosa, being more expressed in the epithelium, and in lamina propria immune and nonimmune cells. These innate immunity receptors exhibit complementary biological functions, with evidence for pathways overlapping. However, as tolerance is the predominant physiological response in the gastrointestinal mucosa, it appears that the TLRs are relatively downregulated, while NLRs play a critical role in mucosal defense in the gut. Over the past two decades, genetic polymorphisms have been associated with several diseases including inflammatory bowel disease. Special emphasis has been given to the susceptibility to Crohn's disease, in association with abnormalities in the NOD2 and in the NLRP3/inflammasome. Nevertheless, the mechanisms underlying innate immune receptors dysfunction that result in the persistent inflammation in inflammatory bowel disease remain to be clarified.
Collapse
Affiliation(s)
- Paula Peruzzi Elia
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Yolanda Faia M. Tolentino
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Heitor Siffert Pereira de Souza
- Serviço de Gastroenterologia and Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, 21941-913 Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Abstract
NLRs are a class of cytoplasmic PRRs with various functions, ranging from pathogen/damage sensing to the modulation of inflammatory signaling and transcriptional control of MHC and related genes. In addition, some NLRs have been implicated in preimplantation and prenatal development. NLRP12 (also known as RNO, PYPAF7, and Monarch-1), a member of the family containing an N-terminal PYD, a NBD, and a C-terminal LRR region, is one of the first described NLR proteins whose role remains controversial. The interest toward NLRP12 has been boosted by its recent involvement in colon cancer, as well as in the protection against some severe infections, such as that induced by Yersinia pestis, the causative agent of plague. As NLRP12 is mainly expressed by the immune cells, and its expression is down-regulated in response to pathogen products and inflammatory cytokines, it has been predicted to play a role as a negative regulator of the inflammatory response. Herein, we present an overview of the NLR family and summarize recent insights on NLRP12 addressing its contribution to inflammatory signaling, host defense, and carcinogenesis.
Collapse
Affiliation(s)
- Sinem Tuncer
- Department of Biology and Biotechnology, "Charles Darwin", Sapienza, University of Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology, "Charles Darwin", Sapienza, University of Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology, "Charles Darwin", Sapienza, University of Rome, Italy
| |
Collapse
|
9
|
Corridoni D, Arseneau KO, Cifone MG, Cominelli F. The dual role of nod-like receptors in mucosal innate immunity and chronic intestinal inflammation. Front Immunol 2014; 5:317. [PMID: 25071778 PMCID: PMC4090755 DOI: 10.3389/fimmu.2014.00317] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 01/11/2023] Open
Abstract
Nucleotide-binding and oligomerization domain NOD-like receptors (NLRs) are highly conserved cytosolic pattern recognition receptors that play, in combination with toll-like receptors, a critical role in innate immunity and inflammation. These proteins are characterized by a central oligomerization domain termed nucleotide-binding domain, and a protein interaction domain containing leucine-rich repeats. Some NLRs, including NOD1 and NOD2, sense the cytosolic presence of conserved bacterial molecular signatures and drive the activation of mitogen-activated protein kinase and the transcription factor NF-κB. A different set of NLRs induces caspase-1 activation through the assembly of large protein complexes known as inflammasomes. Activation of NLR proteins results in secretion of pro-inflammatory cytokines and subsequent inflammatory responses. The critical role of NLRs in innate immunity is underscored by the fact that polymorphisms within their genes are implicated in the development of several immune-mediated diseases, including inflammatory bowel disease. Over the past few years, the role of NLRs in intestinal homeostasis has been highlighted, however the mechanism by which dysfunction in these proteins leads to aberrant inflammation is still the focus of much investigation. The purpose of this review is to systematically evaluate the function of NLRs in mucosal innate immunity and understand how genetic or functional alterations in these components can lead to the disruption of intestinal homeostasis, and the subsequent development of chronic inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| | - Kristen O Arseneau
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University , Cleveland, OH , USA ; Digestive Health Research Center, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
10
|
Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm 2013; 2013:342931. [PMID: 23843682 PMCID: PMC3697414 DOI: 10.1155/2013/342931] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/15/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Shastri
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| | - Domenico Marco Bonifati
- Unit of Neurology, Department of Neurological Disorders, Santa Chiara Hospital, Largo Medaglie d'oro 1, 38100 Trento, Italy
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| |
Collapse
|
11
|
Guerra JF, Zasloff M, Lough D, Abdo J, Hawksworth J, Mastumoto C, Girlanda R, Island E, Shetty K, Kaufman S, Fishbein T. Nucleotide oligomerization domain 2 polymorphisms in patients with intestinal failure. J Gastroenterol Hepatol 2013; 28:309-13. [PMID: 23173613 DOI: 10.1111/jgh.12037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nucleotide oligomerization domain 2 (NOD2) has been associated with intestinal immunity after the discovery that its polymorphisms are linked to Crohn's disease (CD). Intestinal failure (IF) represents a wider spectrum of diseases where intestinal homeostasis has been disrupted. AIM To evaluate the prevalence of NOD2 mutations in a population with IF as well as its association with the different conditions causing this problem. METHODS One hundred ninety-two consecutive patients with IF and 103 healthy controls were genotyped for the three most common NOD2 polymorphisms. Genotypes were compared between the groups and were related to the entities causing IF. RESULTS A high percentage (26%) of patients had at least one of the three most common NOD2 polymorphisms, while only a 4.8% of healthy controls had a mutant genotype. In patients with IF, specific mutations for the 702W, 908R and 1007fs alleles were 11, 5 and 12.5%, respectively, compared with 0.9% (P = 0.0003), 1.9% (P = 0.1) and 1.9% (P = 0.001) in the control group. If we consider patients with any cause of IF other than CD, the percentage is still as high as 18.8%, with specific mutation frequencies of 7.6% (702W; P = 0.01), 5.8% (908R; P = 0.1) and 8.2% (1007fs; P = 0.002). We could not establish an association between a NOD2 mutant genotype with any other specific clinical condition other than CD. CONCLUSION Our finding supports the importance of NOD2 in the maintenance of intestinal immune homeostasis and may be important to a variety of intestinal stressors.
Collapse
Affiliation(s)
- Juan Francisco Guerra
- Georgetown Transplant Institute, Georgetown University Hospital, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Nod-like receptors (NLRs) are intracellular innate immune sensors of microbes and danger signals that control multiple aspects of inflammatory responses. We review the evidence that highlights the critical importance of NLRs in the host response to intestinal pathogens. Moreover, we discuss the potential roles played by NLRs in the dynamic control of the intestinal microbiota and how commensal microorganisms may affect host susceptibility to enteric bacterial pathogens through interactions with NLRs as well as with invading pathogens. RECENT FINDINGS Recent studies targeting the intestinal microbiota in the context of NLR deficiencies suggest inherent alterations in bacterial density or abundance may underlie the development of inflammatory diseases. As commensal microorganisms may also affect host susceptibility to enteric bacterial pathogens, NLRs might promote intestinal innate immune defense through mechanisms more complex than previously anticipated. SUMMARY The inclusion of the intestinal microbiota as a critical parameter in innate immunity represents an exciting new dimension for understanding NLR functioning and the clinical implications for human health.
Collapse
|
13
|
Henderson P, Stevens C. The role of autophagy in Crohn's disease. Cells 2012; 1:492-519. [PMID: 24710487 PMCID: PMC3901108 DOI: 10.3390/cells1030492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 02/05/2023] Open
Abstract
(Macro)-autophagy is a homeostatic process by which eukaryotic cells dispose of protein aggregates and damaged organelles. Autophagy is also used to degrade micro-organisms that invade intracellularly in a process termed xenophagy. Genome-wide association scans have recently identified autophagy genes as conferring susceptibility to Crohn's disease (CD), one of the chronic inflammatory bowel diseases, with evidence suggesting that CD arises from a defective innate immune response to enteric bacteria. Here we review the emerging role of autophagy in CD, with particular focus on xenophagy and enteric E. coli strains with an adherent and invasive phenotype that have been consistently isolated from CD patients with ileal disease.
Collapse
Affiliation(s)
- Paul Henderson
- Department of Child Life and Health, 20 Sylvan Place, University of Edinburgh, Edinburgh EH9 1UW, UK.
| | - Craig Stevens
- Gastrointestinal Unit, Institute for Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
14
|
Abstract
Initial recognition of bacteria by the innate immune system is thought to occur primarily by germline-encoded pattern recognition receptors (PRRs). These receptors are present in multiple compartments of host cells and are thus capable of surveying both the intracellular and extracellular milieu for bacteria. It has generally been presumed that the cellular location of these receptors dictates what type of bacteria they respond to: extracellular bacteria being recognized by cell surface receptors, such as certain Toll-like receptors, and bacteria that are capable of breaching the plasma membrane and entering the cytoplasm, being sensed by cytoplasmic receptors, including the Nod-like receptors (NLRs). Increasingly, it is becoming apparent that this is a false dichotomy and that extracellular bacteria can be sensed by cytoplasmic PRRs and this is crucial for controlling the levels of these bacteria. In this review, we discuss the role of two NLRs, Nod1 and Nod2, in the recognition of and response to extracellular bacteria.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
15
|
Colleran A, Ryan A, O'Gorman A, Mureau C, Liptrot C, Dockery P, Fearnhead H, Egan LJ. Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-kappaB) activity. J Biol Chem 2011; 286:22886-93. [PMID: 21454695 DOI: 10.1074/jbc.m110.199950] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factor NF-κB is persistently activated in many chronic inflammatory diseases and cancers. The short term regulation of NF-κB is well understood, but little is known about the mechanisms of its long term activation. We studied the effect of a single application of TNF-α on NF-κB activity for up to 48 h in intestinal epithelial cells. Results show that NF-κB remained persistently activated up to 48 h after TNF-α and that the long term activation of NF-κB was accompanied by a biphasic degradation of IκBα. The first phase of IκBα degradation was proteasome-dependent, but the second was not. Further investigation showed that TNF-α stimulated formation of autophagosomes in intestinal epithelial cells and that IκBα co-localized with autophagosomal vesicles. Pharmacological or genetic blockade of autophagosome formation or the inhibition of lysosomal proteases decreased TNF-α-induced degradation of IκBα and lowered NF-κB target gene expression. Together, these findings indicate a role of autophagy in the control of long term NF-κB activity. Because abnormalities in autophagy have been linked to ineffective innate immunity, we propose that alterations in NF-κB may mediate this effect.
Collapse
Affiliation(s)
- Amy Colleran
- Department of Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sharma SM, Martin TM, Rosé CD, Dick AD, Ramanan AV. Distinguishing between the innate immune response due to ocular inflammation and infection in a child with juvenile systemic granulomatous disease treated with anti-TNFα monoclonal antibodies. Rheumatology (Oxford) 2011; 50:990-2. [PMID: 21278066 DOI: 10.1093/rheumatology/keq431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:362-81. [PMID: 20725949 DOI: 10.1002/ibd.21403] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022]
Abstract
The current paradigm of inflammatory bowel diseases (IBD), both Crohn's disease (CD) and ulcerative colitis (UC), involves the interaction between environmental factors in the intestinal lumen and inappropriate host immune responses in genetically predisposed individuals. The intestinal mucosal barrier has evolved to maintain a delicate balance between absorbing essential nutrients while preventing the entry and responding to harmful contents. In IBD, disruptions of essential elements of the intestinal barrier lead to permeability defects. These barrier defects exacerbate the underlying immune system, subsequently resulting in tissue damage. The epithelial phenotype in active IBD is very similar in CD and UC. It is characterized by increased secretion of chloride and water, leading to diarrhea, increased permeability via both the transcellular and paracellular routes, and increased apoptosis of epithelial cells. The main cytokine that seems to drive these changes is tumor necrosis factor alpha in CD, whereas interleukin (IL)-13 may be more important in UC. Therapeutic restoration of the mucosal barrier would provide protection and prevent antigenic overload due to intestinal "leakiness." Here we give an overview of the key players of the intestinal mucosal barrier and review the current literature from studies in humans and human systems on mechanisms underlying mucosal barrier dysfunction in IBD.
Collapse
Affiliation(s)
- Sa'ad Y Salim
- Department of Clinical and Experimental Medicine, Division of Surgery and Clinical Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
18
|
Abstract
Upon intracellular bacterial exposure, the Crohn's disease and sarcoidosis susceptibility protein NOD2 (nucleotide oligomerization domain protein 2) binds to the protein kinase RIP2 (receptor-interacting protein 2) to coordinate NF-κB (nuclear factor κ B)-mediated cytokine responses. While RIP2 clearly has kinase activity, the function of its kinase domain has been enigmatic. Although originally classified as a serine-threonine kinase based on homology scans, we find that RIP2 also has tyrosine kinase activity. RIP2 undergoes autophosphorylation on Tyr 474 (Y474). This phosphorylation event is necessary for effective NOD2 signaling and does not occur in the presence of the most common Crohn's disease-associated NOD2 allele. Given this tyrosine kinase activity, a small-molecule inhibitor screen designed to identify pharmacologic agents that inhibit RIP2's tyrosine kinase activity was performed. At nanomolar concentrations, the EGFR (epidermal growth factor receptor) tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) were found to inhibit both RIP2 tyrosine phosphorylation and MDP (muramyl dipeptide)-induced cytokine release in a variety of NOD2 hyperactivation states. This effect is specific for RIP2 and does not depend on EGFR. The finding that RIP2 has tyrosine kinase activity and the finding that gefitinib and erlotinib, two agents already used clinically for cancer chemotherapy, can inhibit this activity suggest that RIP2's tyrosine kinase activity could be targeted specifically in the treatment of inflammatory diseases.
Collapse
|
19
|
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, USA
| | | |
Collapse
|