1
|
Jinda W, Tuekprakhon A, Thongnoppakhun W, Limwongse C, Trinavarat A, Atchaneeyasakul LO. Molecular and clinical characterization of Thai patients with achromatopsia: identification of three novel disease-associated variants in the CNGA3 and CNGB3 genes. Int Ophthalmol 2020; 41:121-134. [PMID: 32869108 DOI: 10.1007/s10792-020-01559-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Achromatopsia (ACHM) is an autosomal recessive cone disorder characterized by pendular nystagmus, photophobia, reduced visual acuity, and partial or total absence of color vision. Mutations in six genes (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) have been reported in ACHM. There is no information on these disease-associated genes in Thai population. This study aimed to investigate the molecular and clinical characteristics in Thai patients with ACHM. METHODS Seven unrelated Thai patients with ACHM were recruited. Detailed ophthalmologic examination was performed. Polymerase chain reaction (PCR)-coupled single-strand conformation polymorphism (SSCP) screening followed by Sanger sequencing was used to identify sequence variants in all exons and splice junctions of three genes (CNGA3, CNGB3, and GNAT2). The pathogenicity of the detected variants was interpreted. Segregation analysis was performed to determine variant sharing in available family members. RESULTS Four patients displayed different SSCP migration patterns. Sequence analysis revealed a reported pathogenic and a novel disease-associated variant in the CNGA3 gene. For the CNGB3 gene, we found two novel disease-associated variants and a reported variant of uncertain significance (VUS). Segregation analysis confirmed that the variants identified in each patient were present in the heterozygous state in their corresponding family members, which was consistent with an autosomal recessive mode of inheritance. CONCLUSIONS This study demonstrated the first molecular and clinical characterization of ACHM in Thai patients. The identification of disease-associated genes in a specific population leads to a personalized gene therapy benefiting those affected patients.
Collapse
Affiliation(s)
- Worapoj Jinda
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aekkachai Tuekprakhon
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
3
|
Jacobson MA, Jones LJ, Colussi DJ, Tanaka JC. High-Throughput Ca 2+ Flux Assay To Monitor Cyclic Nucleotide-Gated Channel Activity and Characterize Achromatopsia Mutant Channel Function. ACS Chem Neurosci 2019; 10:3662-3670. [PMID: 31290651 DOI: 10.1021/acschemneuro.9b00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cone photoreceptor cyclic-nucleotide gated channels (CNG) are tetrameric proteins composed of subunits from CNGA3 and CNGB3. These channels transduce light information into electrical signals carried by both Na+ and Ca2+ ions. More than 100 mutations in the CNGA3 gene are associated with the inherited retinal disorder, achromatopsia 2 (ACHM2), which results in attenuation or loss of color vision, daylight blindness, and reduced visual acuity. Classical techniques to measure CNG channel function utilize patch clamp electrophysiology measuring Na currents in the absence of divalent cations, yet intracellular Ca2+ regulates both light and dark adaptation in photoreceptors. We developed a fluorescence-based, high-throughput Ca2+ flux assay using yellow fluorescent protein (YFP) tagged CNGA3 channels expressed in HEK293 cells which allow monitoring for folding defects in mutant channels. The cell permeant cGMP analog, 8-(4-chlorophenylthio)-cGMP (CPT-cGMP), was used to activate Ca2+ flux. The assay was validated using wild-type CNGA3 homomeric and heteromeric channels and ACHM2-associated homomeric mutant CNG channels, CNGA3-R427C, CNGA3-E590K, and CNGA3-L633P. Additionally, we examined two naturally occurring canine mutations causing day-blindness previously studied by patch clamp. We compared the CPT-cGMP K0.5 values of the channels with patch clamp values from previous studies. The assay provides a screen for modulation of gating and/or rescue of trafficking and/or misfolding defects in ACHM2-associated CNG channels. Importantly, the calcium flux assay is advantageous compared to patch clamp as it allows the ability to monitor CNG channel activity in the presence of calcium.
Collapse
Affiliation(s)
- Marlene A Jacobson
- Department of Pharmaceutical Sciences, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
- Moulder Center for Drug Discovery Research, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Laura J Jones
- Department of Biology, College of Science and Technology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Dennis J Colussi
- Department of Pharmaceutical Sciences, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
- Moulder Center for Drug Discovery Research, School of Pharmacy , Temple University , Philadelphia , Pennsylvania 19140 , United States
| | - Jacqueline C Tanaka
- Department of Biology, College of Science and Technology , Temple University , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
4
|
Breuer R, Mattheisen M, Frank J, Krumm B, Treutlein J, Kassem L, Strohmaier J, Herms S, Mühleisen TW, Degenhardt F, Cichon S, Nöthen MM, Karypis G, Kelsoe J, Greenwood T, Nievergelt C, Shilling P, Shekhtman T, Edenberg H, Craig D, Szelinger S, Nurnberger J, Gershon E, Alliey-Rodriguez N, Zandi P, Goes F, Schork N, Smith E, Koller D, Zhang P, Badner J, Berrettini W, Bloss C, Byerley W, Coryell W, Foroud T, Guo Y, Hipolito M, Keating B, Lawson W, Liu C, Mahon P, McInnis M, Murray S, Nwulia E, Potash J, Rice J, Scheftner W, Zöllner S, McMahon FJ, Rietschel M, Schulze TG. Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics. Int J Bipolar Disord 2018; 6:24. [PMID: 30415424 PMCID: PMC6230336 DOI: 10.1186/s40345-018-0132-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. RESULTS Two of these rules-one associated with eating disorder and the other with anxiety-remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. CONCLUSION Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.
Collapse
Affiliation(s)
- René Breuer
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Manuel Mattheisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Center for Integrative Sequencing, iSEQ, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Bertram Krumm
- Department for Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Layla Kassem
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas W Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sven Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Juelich, Juelich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - George Karypis
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN, USA
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Tiffany Greenwood
- Department of Psychiatry, University of California San Diego, San Diego, USA
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Caroline Nievergelt
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Paul Shilling
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - David Craig
- The Translational Genomics Research Institute, Phoenix, USA
| | | | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | - Elliot Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Peter Zandi
- Department of Mental Health, John Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, John Hopkins School of Medicine, Baltimore, USA
| | - Nicholas Schork
- The Translational Genomics Research Institute, Phoenix, USA
- J. Craig Venter Institute, La Jolla, USA
| | - Erin Smith
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, USA
- Department of Pediatrics and Rady's Children's Hospital, School of Medicine, University of California San Diego, La Jolla, USA
| | - Daniel Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Peng Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Judith Badner
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Wade Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | | | - William Byerley
- Department of Psychiatry, University of California at San Francisco, San Francisco, USA
| | | | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Yirin Guo
- Center for Applied Genomics, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, USA
| | - Maria Hipolito
- Department of Psychiatry and Behavioral Sciences, Howard University Hospital, Washington, USA
| | - Brendan Keating
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Lawson
- Dell Medical School, University of Texas at Austin, Austin, USA
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, USA
| | - Pamela Mahon
- Department of Psychiatry and Behavioral Sciences, John Hopkins School of Medicine, Baltimore, USA
| | - Melvin McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Sarah Murray
- Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, USA
- Department of Pathology, University of California San Diego, La Jolla, USA
| | | | - James Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa School of Medicine, Iowa City, USA
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, USA
| | | | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Francis J McMahon
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Thomas G Schulze
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
- Human Genetics Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.
- Institute of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians-University, Munich, Nußbaumstr. 7, 80336, Munich, Germany.
| |
Collapse
|
5
|
Gupta S, Chaurasia A, Pathak E, Mishra R, Chaudhry VN, Chaudhry P, Mukherjee A, Mutsuddi M. Whole exome sequencing unveils a frameshift mutation in CNGB3 for cone dystrophy: A case report of an Indian family. Medicine (Baltimore) 2017; 96:e7490. [PMID: 28746191 PMCID: PMC5627817 DOI: 10.1097/md.0000000000007490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Genetic elucidation of cone-dominated retinal dystrophies in Indian subcontinent is much needed to identify and catalog underlying genetic defects. In this context, the present study recruited a consanguineous Indian family affected with autosomal recessive cone dystrophy (CD). Considering the huge genetic heterogeneity and recessive inheritance of the disease, we chose to dissect out causal variant in this family by whole exome sequencing (WES). PATIENT CONCERNS In the recruited family, three of the six siblings had complaints of poor visual acuity, photophobia, and disturbed colour vision since early childhood. Fundus examination disclosed vascular attenuation and macular retinal pigment epithelium (RPE) changes in all the affected siblings, signifying degeneration of photoreceptor cells. DIAGNOSIS Complete clinical investigation and electroretinography studies led to the diagnosis of cone dystrophy in three siblings of the family. INTERVENTIONS Detailed ophthalmic examination, including family history, visual function testing, and retinal imaging, was performed. We captured and sequenced exomes of 2 affected siblings and their mother using SureSelect Human All Exon V5 Kit on Illumina HiSeq 2000/2500 platform with 100 bp paired-end sequencing method. Candidates after data analysis were screened by segregation analysis and Sanger sequencing. Considering recessive inheritance and consanguinity in the pedigree, we attempted to map large loci homozygous by descent in the genome of patients using exome sequencing variants. Extensive protein modeling was carried out to assess possible consequences of the identified variant on the 3-dimensional structure of the protein. OUTCOMES WES generated more than 65,000 variants for each individual. Assuming recessive inheritance, 13,026 variants were selected. Further filtering on the basis of their position in gene, class, and minor allele frequency constricted the huge list to 12 rare variants. Finally, we ascertained a single base deletion c.1148delC (p.Thr383fs) in the gene CNGB3 as the causal variant. This is a recurrent frameshift mutation resulting in truncated CNGB3 protein. We mapped a large 15-Mb stretch of homozygous markers spanning the causal variant in the proband. The gene CNGB3 encodes modulatory subunit of cyclic nucleotide-gated channels in cone photoreceptors. Protein modeling reveals loss of 2 transmembrane helices and conserved CAP_ED domain in truncated CNGB3, which eventually is predicted to form nonfunctional channels and hamper phototransduction. LESSONS We have identified a recurrent mutation c.1148delC (p.Thr383fs) in CNGB3 for autosomal recessive CD. The present report provides the first description of CNGB3 mutation from India. It is also the foremost investigation of familial CD in Indian patients; therefore, it presents the primary genetic etiology of CD in India.
Collapse
Affiliation(s)
- Shashank Gupta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh
| | | | - Ekta Pathak
- Department of Bioinformatics, Mahila Maha Vidyalaya, Banaras Hindu University
| | - Rajeev Mishra
- Department of Bioinformatics, Mahila Maha Vidyalaya, Banaras Hindu University
| | - Vidya Nair Chaudhry
- R. K. Netralaya Eye Hospital and Research Centre, Varanasi, Uttar Pradesh, India
| | - Prashaant Chaudhry
- R. K. Netralaya Eye Hospital and Research Centre, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh
| |
Collapse
|
6
|
Yu W, Jiang LH, Zheng Y, Hu X, Luo J, Yang W. Inactivation of TRPM2 channels by extracellular divalent copper. PLoS One 2014; 9:e112071. [PMID: 25386648 PMCID: PMC4227687 DOI: 10.1371/journal.pone.0112071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
Cu2+ is an essential metal ion that plays a critical role in the regulation of a number of ion channels and receptors in addition to acting as a cofactor in a variety of enzymes. Here, we showed that human melastatin transient receptor potential 2 (hTRPM2) channel is sensitive to inhibition by extracellular Cu2+. Cu2+ at concentrations as low as 3 µM inhibited the hTRPM2 channel completely and irreversibly upon washing or using Cu2+ chelators, suggesting channel inactivation. The Cu2+-induced inactivation was similar when the channels conducted inward or outward currents, indicating the permeating ions had little effect on Cu2+-induced inactivation. Furthermore, Cu2+ had no effect on singe channel conductance. Alanine substitution by site-directed mutagenesis of His995 in the pore-forming region strongly attenuated Cu2+-induced channel inactivation, and mutation of several other pore residues to alanine altered the kinetics of channel inactivation by Cu2+. In addition, while introduction of the P1018L mutation is known to result in channel inactivation, exposure to Cu2+ accelerated the inactivation of this mutant channel. In contrast with the hTRPM2, the mouse TRPM2 (mTRPM2) channel, which contains glutamine at the position equivalent to His995, was insensitive to Cu2+. Replacement of His995 with glutamine in the hTRPM2 conferred loss of Cu2+-induced channel inactivation. Taken together, these results suggest that Cu2+ inactivates the hTRPM2 channel by interacting with the outer pore region. Our results also indicate that the amino acid residue difference in this region gives rise to species-dependent effect by Cu2+ on the human and mouse TRPM2 channels.
Collapse
Affiliation(s)
- Wenyue Yu
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin-Hua Jiang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan Province, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yang Zheng
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xupang Hu
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianhong Luo
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail: (JHL); (WY)
| | - Wei Yang
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail: (JHL); (WY)
| |
Collapse
|
7
|
Roosing S, Thiadens AAHJ, Hoyng CB, Klaver CCW, den Hollander AI, Cremers FPM. Causes and consequences of inherited cone disorders. Prog Retin Eye Res 2014; 42:1-26. [PMID: 24857951 DOI: 10.1016/j.preteyeres.2014.05.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
Abstract
Hereditary cone disorders (CDs) are characterized by defects of the cone photoreceptors or retinal pigment epithelium underlying the macula, and include achromatopsia (ACHM), cone dystrophy (COD), cone-rod dystrophy (CRD), color vision impairment, Stargardt disease (STGD) and other maculopathies. Forty-two genes have been implicated in non-syndromic inherited CDs. Mutations in the 5 genes implicated in ACHM explain ∼93% of the cases. On the contrary, only 21% of CRDs (17 genes) and 25% of CODs (8 genes) have been elucidated. The fact that the large majority of COD and CRD-associated genes are yet to be discovered hints towards the existence of unknown cone-specific or cone-sensitive processes. The ACHM-associated genes encode proteins that fulfill crucial roles in the cone phototransduction cascade, which is the most frequently compromised (10 genes) process in CDs. Another 7 CD-associated proteins are required for transport processes towards or through the connecting cilium. The remaining CD-associated proteins are involved in cell membrane morphogenesis and maintenance, synaptic transduction, and the retinoid cycle. Further novel genes are likely to be identified in the near future by combining large-scale DNA sequencing and transcriptomics technologies. For 31 of 42 CD-associated genes, mammalian models are available, 14 of which have successfully been used for gene augmentation studies. However, gene augmentation for CDs should ideally be developed in large mammalian models with cone-rich areas, which are currently available for only 11 CD genes. Future research will aim to elucidate the remaining causative genes, identify the molecular mechanisms of CD, and develop novel therapies aimed at preventing vision loss in individuals with CD in the future.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, 3000 CA, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|