1
|
Speziale P, Foster TJ, Arciola CR. The endothelium at the interface between tissues and Staphylococcus aureus in the bloodstream. Clin Microbiol Rev 2025; 38:e0009824. [PMID: 39807893 PMCID: PMC11905367 DOI: 10.1128/cmr.00098-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
SUMMARYStaphylococcus aureus is a major human pathogen. It can cause many types of infections, in particular bacteremia, which frequently leads to infective endocarditis, osteomyelitis, sepsis, and other debilitating diseases. The development of secondary infections is based on the bacterium's ability to associate with endothelial cells lining blood vessels. The success of endothelial colonization and infection by S. aureus relies on its ability to express a wide array of cell wall-anchored and secreted virulence factors. Establishment of endothelial infection by the pathogen is a multistep process involving adhesion, invasion, extravasation, and dissemination of the bacterium into surrounding tissues. The process is dependent on the type of endothelium in different organs (tissues) and pathogenetic potential of the individual strains. In this review, we report an update on the organization of the endothelium in the vessels, the structure and function of the virulence factors of S. aureus, and the several aspects of bacteria-endothelial cell interactions. After these sections, we will discuss recent advances in understanding the specific mechanisms of infections that develop in the heart, bone and joints, lung, and brain. Finally, we describe how neutrophils bind to endothelial cells, migrate to the site of infection to kill bacteria in the tissues, and how staphylococci counteract neutrophils' actions. Knowledge of the molecular details of S. aureus-endothelial cell interactions will promote the development of new therapeutic strategies and tools to combat this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Carla Renata Arciola
- Laboratory of Pathology of Implant Infections, Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Hu H, Liu S, Hon K, Psaltis AJ, Wormald PJ, Vreugde S. Staphylococcal protein A modulates inflammation by inducing interferon signaling in human nasal epithelial cells. Inflamm Res 2023; 72:251-262. [PMID: 36527461 PMCID: PMC9925485 DOI: 10.1007/s00011-022-01656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE AND DESIGN Staphylococcus aureus (S. aureus) is one of the leading causes of human respiratory tract infections. The function of Staphylococcal protein A (SpA), expressed on the S. aureus bacterial membrane and released in the environment, on human nasal epithelial cells (HNECs) have not been fully elucidated. In this study, we tested the SpA expression in S. aureus from chronic rhinosinusitis patients and investigated the effects of SpA on HNECs inflammation through Interferon Gamma Receptor 1(IFNGR1)/phosphorylated Janus Kinase 2 (p-JAK2) pathway. METHODS RNA profiling was performed to investigate inflammatory activation in a S. aureus chronic rhinosinusitis (CRS) mouse model. SpA release by S. aureus clinical isolates was determined using ELISA. The effect of purified SpA and SpA enriched conditioned media from S. aureus clinical isolates on HNECs cytotoxicity, apoptosis and release of inflammatory cytokines was evaluated using lactate dehydrogenase assays, and flow cytometry. SpA dependent IFNGR1 and p-JAK2 expression were assessed by qPCR, immunofluorescence and western blot in HNECs. RESULTS 49 genes were significantly induced in S. aureus CRS mice indicative of activation of interferon signaling. SpA release was significantly higher in S. aureus clinical isolates from chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Purified SpA significantly increased IFNGR1 mRNA and protein expression in HNECs. SpA induced cytotoxic effects and induced the release of Interleukin-6 (IL-6) and IL-8 in an IFNGR1 dependent way. CONCLUSION SpA induces interferon signaling through activation of the IFNGR1-JAK-2 pathway, which provides an understanding of how S. aureus SpA affects the inflammatory process in the upper airways.
Collapse
Affiliation(s)
- Hua Hu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia ,Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Alkis J. Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Peter John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA Australia ,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, SA, Australia. .,Department of Otolaryngology Head & Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Tromp AT, Zhao Y, Jongerius I, Heezius ECJM, Abrial P, Ruyken M, van Strijp JAG, de Haas CJC, Spaan AN, van Kessel KPM, Henry T, Haas PJA. Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. Dis Model Mech 2020; 13:dmm045534. [PMID: 32471891 PMCID: PMC7541340 DOI: 10.1242/dmm.045534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial pathogens have evolved to secrete strong anti-inflammatory proteins that target the immune system. It was long speculated whether these virulence factors could serve as therapeutics in diseases in which abnormal immune activation plays a role. We adopted the secreted chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) as a model virulence factor-based therapeutic agent for diseases in which C5AR1 stimulation plays an important role. We show that the administration of CHIPS in human C5AR1 knock-in mice successfully dampens C5a-mediated neutrophil migration during immune complex-initiated inflammation. Subsequent CHIPS toxicology studies in animal models were promising. However, during a small phase I trial, healthy human volunteers showed adverse effects directly after CHIPS administration. Subjects showed clinical signs of anaphylaxis with mild leukocytopenia and increased C-reactive protein concentrations, which are possibly related to the presence of relatively high circulating anti-CHIPS antibodies and suggest an inflammatory response. Even though our data in mice show CHIPS as a potential anti-inflammatory agent, safety issues in human subjects temper the use of CHIPS in its current form as a therapeutic candidate. The use of staphylococcal proteins, or other bacterial proteins, as therapeutics or immune-modulators in humans is severely hampered by pre-existing circulating antibodies.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Erik C J M Heezius
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Pauline Abrial
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- Sanquin Research, Department of Immunopathology, 1006AD Amsterdam, The Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Yang H, Xu J, Li W, Wang S, Li J, Yu J, Li Y, Wei H. Staphylococcus aureus virulence attenuation and immune clearance mediated by a phage lysin-derived protein. EMBO J 2018; 37:embj.201798045. [PMID: 30037823 DOI: 10.15252/embj.201798045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
New anti-infective approaches are much needed to control multi-drug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Here, we found for the first time that a recombinant protein derived from the cell wall binding domain (CBD) of the bacteriophage lysin PlyV12, designated as V12CBD, could attenuate S. aureus virulence and enhance host immune defenses via multiple manners. After binding with V12CBD, S. aureus became less invasive to epithelial cells and more susceptible to macrophage killing. The expressions of multiple important virulence genes of S. aureus were reduced 2.4- to 23.4-fold as response to V12CBD More significantly, V12CBD could activate macrophages through NF-κB pathway and enhance phagocytosis against S. aureus As a result, good protections of the mice from MRSA infections were achieved in therapeutic and prophylactic models. These unique functions of V12CBD would render it a novel alternative molecule to control MDRS. aureus infections.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingjing Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wuyou Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junhua Li
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Lacoma A, Cano V, Moranta D, Regueiro V, Domínguez-Villanueva D, Laabei M, González-Nicolau M, Ausina V, Prat C, Bengoechea JA. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence 2017; 8:1761-1775. [PMID: 28762868 PMCID: PMC5810471 DOI: 10.1080/21505594.2017.1361089] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Staphylococcus aureus is a particularly difficult pathogen to eradicate from the respiratory tract. Previous studies have highlighted the intracellular capacity of S.aureus in several phagocytic and non-phagocytic cells. The aim of this study was to define S.aureus interaction within a murine alveolar macrophage cell line. Methods: Cell line MH-S was infected with Newman strain. Molecular mechanisms involved in phagocytosis were explored. To assess whether S.aureus survives intracellularly quantitative (gentamicin protection assays and bacterial plating) and qualitative analysis (immunofluorescence microscopy) were performed. Bacterial colocalization with different markers of the endocytic pathway was examined to characterize its intracellular trafficking. Results: We found that S.aureus uptake requires host actin polymerization, microtubule assembly and activation of phosphatidylinositol 3-kinase signaling. Time course experiments showed that Newman strain was able to persist within macrophages at least until 28.5 h post infection. We observed that intracellular bacteria are located inside an acidic subcellular compartment, which co-localizes with the late endosome/lysosome markers Lamp-1, Rab7 and RILP. Colocalization counts with TMR-dextran might reflect a balance between bacterial killing and intracellular survival. Conclusions: This study indicates that S.aureus persists and replicates inside murine alveolar macrophages, representing a privileged niche that can potentially offer protection from antimicrobial activity and immunological host defense mechanisms.
Collapse
Affiliation(s)
- A Lacoma
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - V Cano
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Moranta
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Regueiro
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Domínguez-Villanueva
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M Laabei
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M González-Nicolau
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Ausina
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - C Prat
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - J A Bengoechea
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain.,d Consejo Superior de Investigaciones Científicas , Madrid , Spain.,e Centre for Experimental Medicine , Queen's University Belfast , UK
| |
Collapse
|
6
|
Linge HM, Andersson C, Nordin SL, Olin AI, Petersson AC, Mörgelin M, Welin A, Bylund J, Bjermer L, Erjefält J, Egesten A. Midkine is expressed and differentially processed during chronic obstructive pulmonary disease exacerbations and ventilator-associated pneumonia associated with Staphylococcus aureus infection. Mol Med 2013; 19:314-23. [PMID: 24043271 DOI: 10.2119/molmed.2013.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is sometimes isolated from the airways during acute exacerbations of chronic obstructive pulmonary disease (COPD) but more commonly recognized as a cause of ventilator-associated pneumonia (VAP). Antimicrobial proteins, among them midkine (MK), are an important part of innate immunity in the airways. In this study, the levels and possible processing of MK in relation to S. aureus infection of the airways were investigated, comparing COPD and VAP, thus comparing a state of disease with preceding chronic inflammation and remodeling (COPD) with acute inflammation (that is, VAP). MK was detected in the small airways and alveoli of COPD lung tissue but less so in normal lung tissue. MK at below micromolar concentrations killed S. aureus in vitro. Proteolytic processing of MK by the staphylococcal metalloprotease aureolysin (AL), but not cysteine protease staphopain A (SA), resulted in impaired bactericidal activity. Degradation was seen foremost in the COOH-terminal portion of the molecule that harbors high bactericidal activity. In addition, MK was detected in sputum from patients suffering from VAP caused by S. aureus but less so in sputum from COPD exacerbations associated with the same bacterium. Recombinant MK was degraded more rapidly in sputum from the COPD patients than from the VAP patients and a greater proteolytic activity in COPD sputum was confirmed by zymography. Taken together, proteases of both bacteria and the host contribute to degradation of the antibacterial protein MK, resulting in an impaired defense of the airways, in particular, in COPD where the state of chronic inflammation could be of importance.
Collapse
Affiliation(s)
- Helena M Linge
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Cecilia Andersson
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sara L Nordin
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders I Olin
- Section for Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ann-Cathrine Petersson
- Clinical Microbiology, Regional Laboratories of Region Skåne, Lund, Sweden, University Hospital, Lund, Sweden
| | - Matthias Mörgelin
- Section for Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Leif Bjermer
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Arne Egesten
- Section for Respiratory Medicine and Allergology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. MICROBIOLOGY-SGM 2013; 159:2001-2013. [PMID: 23873783 PMCID: PMC3799228 DOI: 10.1099/mic.0.069369-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human body is constantly challenged by a variety of commensal and pathogenic micro-organisms that trigger the immune system. Central in the first line of defence is the pattern-recognition receptor (PRR)-induced stimulation of the NFκB pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR–NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR–NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Maria Sangvik
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Johanna E Sollid
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
8
|
Kelley WL, Lew DP, Renzoni A. Antimicrobial Peptide Exposure and Reduced Susceptibility to Daptomycin: Insights Into a Complex Genetic Puzzle. J Infect Dis 2012; 206:1153-6. [DOI: 10.1093/infdis/jis485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
9
|
Perret M, Badiou C, Lina G, Burbaud S, Benito Y, Bes M, Cottin V, Couzon F, Juruj C, Dauwalder O, Goutagny N, Diep BA, Vandenesch F, Henry T. Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cell Microbiol 2012; 14:1019-36. [DOI: 10.1111/j.1462-5822.2012.01772.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Abstract
BACKGROUND Chronic infections affect 17 million people yearly, and approximately 550,000 people die each year from, or with, their chronic infections. Acute and chornic infection differences are well known to clinicians, but the role of bacteria in producing these clinical differences remains poorly understood. METHODS This review relies on basic science, clinical studies, and a general review of the medical biofilm literature. The basic science studies are level A and B quality of evidence. The clinical studies are mainly retrospective cohort (level B) and case studies (level C). The biofilm literature includes reviews with varying levels of evidence. All articles have been peer reviewed and meet the standard of evidence-based medicine. RESULTS Acute infections are associated with planktonic bacteria and must be diagnosed rapidly and accurately to prevent tissue damage and/or death. In contrast, biofilm behavior pursues a more parasitic course by producing sustained host hyperinflammation, with the biofilm feeding on plasma exudate. Chronic infections vacillate over long periods of time, responding only partially to antibiotics and reemerging once the antibiotics are withdrawn. Chronic wounds exhibit similar clinical behavior seen in other chronic infections and are associated with biofilm phenotype bacteria on their surface. Biofilm infections, such as chronic wounds, cannot be adequately diagnosed with current clinical cultures; therefore, molecular methods are necessary. CONCLUSIONS Biofilm phenotype bacteria require multiple concurrent strategies, including débridement and targeted antibiofilm agents. Biofilm phenotype bacteria predominate on the surface of wounds, and biofilm-based management improves wound healing outcomes, indicating that biofilm is the right target for managing the bioburden barrier of chronic wounds.
Collapse
|