1
|
Świerczyńska M, Tronina A, Smędowski A. Understanding cataract development in axial myopia: The contribution of oxidative stress and related pathways. Redox Biol 2025; 80:103495. [PMID: 39813957 PMCID: PMC11782857 DOI: 10.1016/j.redox.2025.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Myopia is an evolving global health challenge, with estimates suggesting that by 2050 it will affect half of the world's population, becoming the leading cause of irreversible vision loss. Moreover, myopia can lead to various complications, including the earlier onset of cataracts. Given the progressive aging of the population and the increase in life expectancy, this will contribute to a rising demand for cataract surgery, posing an additional challenge for healthcare systems. The pathogenesis of nuclear and posterior subcapsular cataract (PSC) development in axial myopia is complex and primarily involves intensified liquefaction of the vitreous body, excessive production of reactive oxygen species, impaired antioxidant defense, and chronic inflammation in the eyeball. These factors contribute to disruptions in mitochondrial homeostasis, abnormal cell signaling, lipid peroxidation, protein and nucleic acid damage, as well as the induction of adverse epigenetic modifications. Age-related and oxidative processes can cause destabilization of crystallins with subsequent protein accumulation, which finally drives to a lens opacification. Moreover, an altered redox status is one of the major contributors to the pathogenesis of PSC. This review aims to summarize the mechanisms known to be responsible for the accelerated development of cataracts in axial myopia and to enhance understanding of these relationships.
Collapse
Affiliation(s)
- Marta Świerczyńska
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Agnieszka Tronina
- Department of Pediatric Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Pediatric Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smędowski
- Department of Ophthalmology, Kornel Gibiński University Clinical Center, Medical University of Silesia, Katowice, Poland; Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland; GlaucoTech Co, Katowice, Poland
| |
Collapse
|
2
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
3
|
Angelidis G, Valotassiou V, Satra M, Psimadas D, Koutsikos J, Skoularigis J, Kollia P, Georgoulias P. Investigating the genetic characteristics of CAD: Is there a role for myocardial perfusion imaging techniques? J Nucl Cardiol 2022; 29:2909-2916. [PMID: 33141407 DOI: 10.1007/s12350-020-02403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/02/2020] [Indexed: 01/18/2023]
Abstract
Several environmental and genetic factors have been found to influence the development and progression of coronary artery disease (CAD). Although the effects of the environmental hazards on CAD pathophysiology are well documented, the genetic architecture of the disease remains quite unclear. A number of single-nucleotide polymorphisms have been identified based on the results of the genome-wide association studies. However, there is a lack of strong evidence regarding molecular causality. The minority of the reported predisposing variants can be related to the conventional risk factors of CAD, while most of the polymorphisms occur in non-protein-coding regions of the DNA. However, independently of the specific underlying mechanisms, genetic information could lead to the identification of a population at higher genetic risk for the long-term development of CAD. Myocardial single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are functional imaging techniques that can evaluate directly myocardial perfusion, and detect vascular and/or endothelial dysfunction. Therefore, these techniques could have a role in the investigation of the underlying mechanisms associated with the identified predisposing variants, advancing our understanding regarding molecular causality. In the population at higher genetic risk, myocardial SPECT or PET could provide important evidence through the early depiction of sub-clinical dysfunctions, well before any atherosclerosis marker could be identified. Notably, SPECT and PET techniques have been already used for the investigation of the functional consequences of several CAD-related polymorphisms, as well as the response to certain treatments (statins). Furthermore, therefore, in the clinical setting, the combination of genetic evidence with the findings of myocardial SPECT, or PET, functional imaging techniques could lead to more efficient screening methods and may improve decision making with regard to the diagnostic investigation and patients' management.
Collapse
Affiliation(s)
- G Angelidis
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece.
| | - V Valotassiou
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - M Satra
- Biology & Genetics Laboratory, University of Thessaly, Larissa, Greece
| | - D Psimadas
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - J Koutsikos
- Department of Nuclear Medicine, 401 General Military Hospital, Athens, Greece
| | - J Skoularigis
- Department of Cardiology, University of Thessaly, Larissa, Greece
| | - P Kollia
- Department of Genetics & Biotechnology, Faculty of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - P Georgoulias
- Nuclear Medicine Laboratory, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| |
Collapse
|
4
|
Ghavidel AA, Shiari R, Hassan-Zadeh V, Farivar S. The expression of DNMTs is dramatically decreased in peripheral blood mononuclear cells of male patients with juvenile idiopathic arthritis. Allergol Immunopathol (Madr) 2020; 48:182-186. [PMID: 31901404 DOI: 10.1016/j.aller.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Juvenile idiopathic arthritis (JIA) is an autoimmune rheumatic disease, which affects primarily the joints in children under 16 years old. The etiology of JIA is yet unknown but research has shown that JIA is a multifactorial disease implicating several genes and environmental factors. Environmental factors affect immune cells via epigenetic mechanisms. One of the most important epigenetic mechanisms is DNA methylation catalyzed by DNA methyltransferases (DNMTs) and usually associated with gene silencing. In this study, we analyzed the expression of three DNA methyltransferases namely DNMT1, DNMT3a and DNMT3b in peripheral blood mononuclear cells (PBMCs) of patients with JIA and compared it with the expression of these genes in healthy young individuals. MATERIALS AND METHODS Peripheral blood mononuclear cells of 28 JIA patients and 28 healthy controls were isolated. Total RNA was extracted, cDNA was synthesized and the transcript levels of DNMTs were analyzed by quantitative PCR. RESULTS Analysis of DNMT1, DNMT3a and DNMT3b relative gene expression in PBMCs of JIA patients and control individuals shows that the expression of DNMT1 and DNMT3a is reduced significantly by 7 folds and 5.5 folds, respectively, in JIA patients compared to healthy controls. Furthermore, the expression of all three DNMTs were significantly and drastically reduced in young affected males compared to healthy males. CONCLUSION This study shows that the expression of DNMTs is reduced in JIA patients and this reduction is severe in male JIA patients.
Collapse
Affiliation(s)
- Afshin Abdi Ghavidel
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran; Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Shiari
- Department of Pediatrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Mofid Children's Hospital, Pediatrics Infectious Research Center (PIRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Shirin Farivar
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran.
| |
Collapse
|
5
|
Marie PY, Visvikis-Siest S. Do we need diagnostic strategies enhanced with genetic information for ischemic heart disease? J Nucl Cardiol 2019; 26:1309-1312. [PMID: 29511928 DOI: 10.1007/s12350-018-1240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Pierre-Yves Marie
- Nuclear Medicine & Nancyclotep Experimental Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France.
- INSERM, UMR-1116, Université de Lorraine, 54000, Nancy, France.
| | - Sophie Visvikis-Siest
- INSERM, UMR-1122, Université de Lorraine, 54000, Nancy, France
- Department of Internal Medicine and Geriatrics, CHRU-Nancy, Université de Lorraine, 54511, Nancy, France
| |
Collapse
|
6
|
Hedrich CM. Mechanistic aspects of epigenetic dysregulation in SLE. Clin Immunol 2018; 196:3-11. [DOI: 10.1016/j.clim.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
7
|
Yu X, Chen H, Zuo C, Jin X, Yin Y, Wang H, Jin M, Ozato K, Xu S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation. FASEB J 2018; 32:552-567. [PMID: 28970247 DOI: 10.1096/fj.201700088rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type I IFNs (IFNIs) are involved in the course of antiviral and antimicrobial activities; however, robust inductions of these can lead to host immunopathology. We have reported that the Pias (protein inhibitor of activated signal transducer and activator of transcription) family member, Piasy, possesses the ability to suppress IFNI transcriptions in mouse embryonic fibroblasts (MEFs), yet the specific molecular mechanism by which it acts remains elusive. Here, we identify that the H3K4me3 levels, one activation mark of genes, in MEFs that were stimulated by poly(I:C) were impaired by Piasy in the IFN-β gene. Piasy bound to the promoter region of the IFN-β gene in MEFs. Meanwhile, retinoblastoma binding protein 2 (Rbp2) was proven to be the only known and novel H3K4me3 demethylase that interacted with Piasy. Overexpression of Rbp2, but not its enzymatically inactive mutant Rbp2H483G/E485Q, retarded the transcription activities of IFNI, whereas small interfering RNA-mediated or short hairpin RNA-mediated knockdown of Rbp2 enhanced IFNI promoter responses. Above all, coexpression of Piasy and Rbp2 led to statistically less IFNI induction than overexpression of either Piasy or Rbp2 alone. Mechanistically, Piasy bound to the Jmjc domain (451-503 aa) of Rbp2 via its PINIT domain (101-218 aa), which is consistent with the domain required for their attenuation of transcription and H3K4me3 levels of IFNI genes. Our study demonstrates that Piasy may prevent exaggerated transcription of IFNI by Rbp2-mediated demethylation of H3K4me3 of IFNI, avoiding excessive immune responses.-Yu, X., Chen, H., Zuo, C., Jin, X., Yin, Y., Wang, H., Jin, M., Ozato, K., Xu, S. Chromatin remodeling: demethylating H3K4me3 of type I IFNs gene by Rbp2 through interacting with Piasy for transcriptional attenuation.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zuo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xi Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mei Jin
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Keiko Ozato
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Songxiao Xu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Rauschert I, Aldunate F, Preussner J, Arocena-Sutz M, Peraza V, Looso M, Benech JC, Agrelo R. Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS One 2017; 12:e0175953. [PMID: 28422997 PMCID: PMC5397038 DOI: 10.1371/journal.pone.0175953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour.
Collapse
Affiliation(s)
- Ines Rauschert
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Fabian Aldunate
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jens Preussner
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Miguel Arocena-Sutz
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Vanina Peraza
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Juan C. Benech
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Agrelo
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
9
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Visvikis-Siest S, Stathopoulou MG. Beyond genome-wide association studies: identifying variants using -omics approaches. Per Med 2015; 12:529-531. [PMID: 29750611 DOI: 10.2217/pme.15.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sophie Visvikis-Siest
- INSERM UMR U1122; IGE-PCV "Interactions Gène-Environnement en Physiopathologie CardioVasculaire", Université de Lorraine, Faculté de Pharmacie, 30 Rue Lionnois, 54000 Nancy, France
| | - Maria G Stathopoulou
- INSERM UMR U1122; IGE-PCV "Interactions Gène-Environnement en Physiopathologie CardioVasculaire", Université de Lorraine, Faculté de Pharmacie, 30 Rue Lionnois, 54000 Nancy, France
| |
Collapse
|
11
|
Stat3 promotes IL-10 expression in lupus T cells through trans-activation and chromatin remodeling. Proc Natl Acad Sci U S A 2014; 111:13457-62. [PMID: 25187566 DOI: 10.1073/pnas.1408023111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immune-regulatory cytokine IL-10 plays a central role during innate and adaptive immune responses. IL-10 is elevated in the serum and tissues of patients with systemic lupus erythematosus (SLE), an autoimmune disorder characterized by autoantibody production, immune-complex formation, and altered cytokine expression. Because of its B cell-promoting effects, IL-10 may contribute to autoantibody production and tissue damage in SLE. We aimed to determine molecular events governing T cell-derived IL-10 expression in health and disease. We link reduced DNA methylation of the IL10 gene with increased recruitment of Stat family transcription factors. Stat3 and Stat5 recruitment to the IL10 promoter and an intronic enhancer regulate gene expression. Both Stat3 and Stat5 mediate trans-activation and epigenetic remodeling of IL10 through their interaction with the histone acetyltransferase p300. In T cells from SLE patients, activation of Stat3 is increased, resulting in enhanced recruitment to regulatory regions and competitive replacement of Stat5, subsequently promoting IL-10 expression. A complete understanding of the molecular events governing cytokine expression will provide new treatment options in autoimmune disorders, including SLE. The observation that altered activation of Stat3 influences IL-10 expression in T cells from SLE patients offers molecular targets in the search for novel target-directed treatment options.
Collapse
|
12
|
Ramadan M, Bremner-Hay NK, Carlson SA, Comstock LR. Synthesis and evaluation of N6-substituted azide- and alkyne-bearing N-mustard analogs of S-adenosyl-l-methionine. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Meyer JL, Zimbardi D, Podgaec S, Amorim RL, Abrão MS, Rainho CA. DNA methylation patterns of steroid receptor genes ESR1, ESR2 and PGR in deep endometriosis compromising the rectum. Int J Mol Med 2014; 33:897-904. [PMID: 24481237 DOI: 10.3892/ijmm.2014.1637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/17/2013] [Indexed: 11/06/2022] Open
Abstract
Endometriosis is characterized by the presence of endometrial-like tissue located outside the uterine cavity. Recent evidence suggests that endometriosis may be an epigenetic disease, as well as an estrogen-dependent disease. Based on the unique steroid hormone receptor expression profile observed in endometriotic lesions as compared to eutopic endometrium, the present study aimed to gain further insight into the DNA methylation patterns of alternative promoters of the steroid receptor genes ESR1, ESR2 and PGR in intestinal deep endometriosis, one of the most aggressive forms of endometriosis. The DNA methylation patterns were evaluated by methylation-specific polymerase chain reaction (MS-PCR) after bisulfite modification in 44 endometriotic tissues as well as in 7 matched eutopic endometrium. No differences in the DNA methylation were observed for the ESR1 and ESR2 genes. Methylation of the PGR gene was observed in 39% (17 out of 44) and 19% (7 out of 37) of the cases in the promoter regions B (PGRB) and A (PGRA), respectively. Both PGR promoter regions were methylated in 3 cases. PGRB methylated alleles were detected exclusively in the endometriotic lesions when compared to the eutopic endometrium obtained from the same patient. The effect of DNA methylation in inhibiting the PGR gene expression was corroborated by immuno-staining for PgR protein in a subset of tissue samples. The present study demonstrated that epigenetic changes occur in both promoter regions of the PGR gene in intestinal endometriosis. Since eutopic and ectopic tissues do not respond sufficiently to progesterone in women with endometriosis, further study is necessary to evaluate the effect of epigenetic alterations in progesterone-resistance in this enigmatic disease.
Collapse
Affiliation(s)
- Joana Ladeira Meyer
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniela Zimbardi
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Sérgio Podgaec
- Department of Obstetrics and Gynecology, São Paulo University (USP), São Paulo, Brazil
| | - Renee Laufer Amorim
- Department of Clinical Veterinary Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maurício Simões Abrão
- Department of Obstetrics and Gynecology, São Paulo University (USP), São Paulo, Brazil
| | - Cláudia Aparecida Rainho
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
14
|
CpG distribution and methylation pattern in porcine parvovirus. PLoS One 2013; 8:e85986. [PMID: 24392033 PMCID: PMC3877397 DOI: 10.1371/journal.pone.0085986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can't methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome.
Collapse
|
15
|
|
16
|
Zhu XJ, Zhou P, Zhang KK, Yang J, Luo Y, Lu Y. Epigenetic regulation of αA-crystallin in high myopia-induced dark nuclear cataract. PLoS One 2013; 8:e81900. [PMID: 24312600 PMCID: PMC3849391 DOI: 10.1371/journal.pone.0081900] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023] Open
Abstract
Purpose To assess the etiology of early-onset dark nucleus in high-myopic patients and its relationship with the epigenetic regulation of αA-crystallin (CRYAA). Methods We reviewed clinical data from patients who underwent cataract surgery at our center in 2012. Lens epithelial samples were collected during capsulorhexis, whereas young lens epithelium was donated. Cataract type and severity were graded according to the Lens Opacity Classification System III (LOCS III). DNA methylation was analyzed by pyrosequencing the CpG islands of the CRYAA promoter in the following groups: Age-Related Cataract (ARC) Nuclear Color (NC) 2–3; High-Myopic Cataract (HMC) NC2–3; ARC NC5–6; HMC NC5–6; and in young lenses graded NC1. We analyzed CRYAA expression by real-time polymerase chain reaction (PCR), reverse transcription PCR, and immunohistochemistry. Results The odds ratio of dark nucleus in high-myopic patients was 5.16 (95% confidence interval: 3.98–6.69; p<0.001). CpG islands in lens epithelial CRYAA promoter in the HMC NC5–6 Group exhibited the highest methylation of all the groups, but no statistically significant differences were evident between the HMC NC2–3 and ARC NC2–3 Groups. Likewise, CRYAA mRNA and protein levels in the HMC NC5–6 Group were significantly lower than the ARC NC5–6 Group and high-myopic controls. Conclusions High myopia is a risk factor for dark nucleus. Downregulation of CRYAA via the hypermethylation of CpG islands in its promoter could underlie the earlier onset of dark nucleus in high-myopic patients.
Collapse
Affiliation(s)
- Xiang-Jia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Peng Zhou
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Ke-Ke Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Jin Yang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Johnsen JM, Nickerson DA, Reiner AP. Massively parallel sequencing: the new frontier of hematologic genomics. Blood 2013; 122:3268-75. [PMID: 24021669 PMCID: PMC3953088 DOI: 10.1182/blood-2013-07-460287] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/14/2013] [Indexed: 01/01/2023] Open
Abstract
Genomic technologies are becoming a routine part of human genetic analysis. The exponential growth in DNA sequencing capability has brought an unprecedented understanding of human genetic variation and the identification of thousands of variants that impact human health. In this review, we describe the different types of DNA variation and provide an overview of existing DNA sequencing technologies and their applications. As genomic technologies and knowledge continue to advance, they will become integral in clinical practice. To accomplish the goal of personalized genomic medicine for patients, close collaborations between researchers and clinicians will be essential to develop and curate deep databases of genetic variation and their associated phenotypes.
Collapse
Affiliation(s)
- Jill M Johnsen
- Department of Medicine, University of Washington, Seattle, WA
| | | | | |
Collapse
|
18
|
Changes in DNA methylation of erythroid-specific genes in K562 cells exposed to phenol and hydroquinone. Toxicology 2013; 312:108-14. [DOI: 10.1016/j.tox.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/18/2013] [Accepted: 08/10/2013] [Indexed: 11/18/2022]
|
19
|
Soh SE, Tint MT, Gluckman PD, Godfrey KM, Rifkin-Graboi A, Chan YH, Stünkel W, Holbrook JD, Kwek K, Chong YS, Saw SM. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol 2013; 43:1401-9. [PMID: 23912809 DOI: 10.1093/ije/dyt125] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Liu Y, Ji Y, Qiu P. Identification of thresholds for dichotomizing DNA methylation data. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2013; 2013:8. [PMID: 23742247 PMCID: PMC3680080 DOI: 10.1186/1687-4153-2013-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
: DNA methylation plays an important role in many biological processes by regulating gene expression. It is commonly accepted that turning on the DNA methylation leads to silencing of the expression of the corresponding genes. While methylation is often described as a binary on-off signal, it is typically measured using beta values derived from either microarray or sequencing technologies, which takes continuous values between 0 and 1. If we would like to interpret methylation in a binary fashion, appropriate thresholds are needed to dichotomize the continuous measurements. In this paper, we use data from The Cancer Genome Atlas project. For a total of 992 samples across five cancer types, both methylation and gene expression data are available. A bivariate extension of the StepMiner algorithm is used to identify thresholds for dichotomizing both methylation and expression data. Hypergeometric test is applied to identify CpG sites whose methylation status is significantly associated to silencing of the expression of their corresponding genes. The test is performed on either all five cancer types together or individual cancer types separately. We notice that the appropriate thresholds vary across different CpG sites. In addition, the negative association between methylation and expression is highly tissue specific.
Collapse
Affiliation(s)
- Yihua Liu
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
21
|
Krämer M, Dees C, Huang J, Schlottmann I, Palumbo-Zerr K, Zerr P, Gelse K, Beyer C, Distler A, Marquez VE, Distler O, Schett G, Distler JHW. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann Rheum Dis 2013; 72:614-20. [PMID: 22915621 DOI: 10.1136/annrheumdis-2012-201615] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Epigenetic modifications such as DNA methylation and histone acetylation have been implicated in the pathogenesis of systemic sclerosis. However, histone methylation has not been investigated so far. We therefore aimed to evaluate the role of the trimethylation of histone H3 on lysine 27 (H3K27me3) on fibroblast activation and fibrosis. METHODS H3K27me3 was inhibited by 3-deazaneplanocin A (DZNep) in cultured fibroblasts and in two murine models of dermal fibrosis. Fibrosis was analysed by assessment of the dermal thickening, determination of the hydroxyproline content and by quantification of the numbers of myofibroblasts. The expression of fos-related antigen 2 (fra-2) was assessed by real-time PCR, western blot and immunohistochemistry and modulated by siRNA. RESULTS Inhibition of H3K27me3 stimulated the release of collagen in cultured fibroblasts in a time and dose-dependent manner. Treatment with DZNep exacerbated fibrosis induced by bleomycin or by overexpression of a constitutively active transforming growth factor β receptor type I. Moreover, treatment with DZNep alone was sufficient to induce fibrosis. Inhibition of H3K27me3 induced the expression of the profibrotic transcription factor fra-2 in vitro and in vivo. Knockdown of fra-2 completely prevented the profibrotic effects of DZNep. CONCLUSIONS These data demonstrate a novel role of H3 Lys27 histone methylation in fibrosis. In contrast to other epigenetic modifications such as DNA methylation and histone acetylation, H3 Lys27 histone methylation acts as a negative regulator of fibroblast activation in vitro and in vivo by repressing the expression of fra-2.
Collapse
Affiliation(s)
- Marlene Krämer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Ulmenweg 18, Erlangen D-91054, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Oral Diseases (2012) Underlying molecular genetic mechanisms of diseases can be deciphered with unbiased strategies using recently developed technologies enabling genome-wide scale investigations. These technologies have been applied in scanning for genetic variations, gene expression profiles, and epigenetic changes for oral and craniofacial diseases. However, these approaches as applied to oral and craniofacial conditions are in the initial stages, and challenges remain to be overcome, including analysis of high throughput data and their interpretation. Here, we review methodology and studies using genome-wide approaches in oral and craniofacial diseases and suggest future directions.
Collapse
Affiliation(s)
- H Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD School of Dentistry, University of Maryland, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Krupinski J, Slevin M. Emerging molecular targets for brain repair after stroke. Stroke Res Treat 2013; 2013:473416. [PMID: 23365789 PMCID: PMC3556882 DOI: 10.1155/2013/473416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
The field of neuroprotection generated consistent preclinical findings of mechanisms of cell death but these failed to be translated into clinics. The approaches that combine the modulation of the inhibitory environment together with the promotion of intrinsic axonal outgrowth needs further work before combined therapeutic strategies will be transferable to clinic trials. It is likely that only when some answers have been found to these issues will our therapeutic efforts meet our expectations. Stroke is a clinically heterogeneous disease and combinatorial treatments require much greater work in pharmacological and toxicological testing. Advances in genetics and results of the Whole Human Genome Project (HGP) provided new unknown information in relation to stroke. Genetic factors are not the only determinants of responses to some diseases. It was recognized early on that "epigenetic" factors were major players in the aetiology and progression of many diseases like stroke. The major players are microRNAs that represent the best-characterized subclass of noncoding RNAs. Epigenetic mechanisms convert environmental conditions and physiological stresses into long-term changes in gene expression and translation. Epigenetics in stroke are in their infancy but offer great promise for better understanding of stroke pathology and the potential viability of new strategies for its treatment.
Collapse
Affiliation(s)
- Jerzy Krupinski
- Cerebrovascular Diseases Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, 08221 Barcelona, Spain
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mark Slevin
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
24
|
Liu J, Yao Y, Yu B, Mao X, Huang Z, Chen D. Effect of maternal folic acid supplementation on hepatic proteome in newborn piglets. Nutrition 2013; 29:230-4. [DOI: 10.1016/j.nut.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/06/2012] [Indexed: 01/27/2023]
|
25
|
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2012; 9:24-33. [PMID: 23147896 DOI: 10.1038/nrrheum.2012.190] [Citation(s) in RCA: 692] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by hyperplastic synovial pannus tissue, which mediates destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS) are a key component of this invasive synovium and have a major role in the initiation and perpetuation of destructive joint inflammation. The pathogenic potential of FLS in RA stems from their ability to express immunomodulating cytokines and mediators as well as a wide array of adhesion molecule and matrix-modelling enzymes. FLS can be viewed as 'passive responders' to the immunoreactive process in RA, their activated phenotype reflecting the proinflammatory milieu. However, FLS from patients with RA also display unique aggressive features that are autonomous and vertically transmitted, and these cells can behave as primary promoters of inflammation. The molecular bases of this 'imprinted aggressor' phenotype are being clarified through genetic and epigenetic studies. The dual behaviour of FLS in RA suggests that FLS-directed therapies could become a complementary approach to immune-directed therapies in this disease. Pathophysiological characteristics of FLS in RA, as well as progress in targeting these cells, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Li XF, Wu XR, Xue M, Wang Y, Wang J, Li Y, Suriguga, Zhang GY, Yi ZC. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells. Toxicol Appl Pharmacol 2012; 265:43-50. [DOI: 10.1016/j.taap.2012.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/06/2012] [Accepted: 09/20/2012] [Indexed: 12/17/2022]
|
27
|
Du Y, Hendrick CE, Frye KS, Comstock LR. Fluorescent DNA labeling by N-mustard analogues of S-adenosyl-L-methionine. Chembiochem 2012; 13:2225-33. [PMID: 22961989 DOI: 10.1002/cbic.201200438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 12/30/2022]
Abstract
Azide and alkyne-functionalized N-mustard analogues of S-adenosyl-L-methionine have been synthesized and were demonstrated to undergo efficient methyltransferase-dependent DNA alkylation by M.TaqI and M.HhaI. Subsequent labeling of the DNA with a fluorophore was carried out using copper-catalyzed azide-alkyne cycloaddition chemistry and was visualized by fluorescence scanning. This work demonstrates the utility of functionalized N-mustard analogues as biochemical tools to study biological methylation and offers a facile way to site-selectively label substrates of DNA methyltransferases.
Collapse
Affiliation(s)
- Yuhao Du
- Department of Chemistry, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA
| | | | | | | |
Collapse
|
28
|
Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics 2012; 6:307-27. [PMID: 23055689 PMCID: PMC3459549 DOI: 10.2147/btt.s24067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Indexed: 12/18/2022]
Abstract
The lack of complete concordance of autoimmune disease in identical twins suggests that nongenetic factors play a major role in determining disease susceptibility. In this review, we consider how epigenetic mechanisms could affect the immune system and effector mechanisms in autoimmunity and/or the target organ of autoimmunity and thus affect the development of autoimmune diseases. We also consider the types of stimuli that lead to epigenetic modifications and how these relate to the epidemiology of autoimmune diseases and the biological pathways operative in different autoimmune diseases. Increasing our knowledge of these epigenetic mechanisms and processes will increase the prospects for controlling or preventing autoimmune diseases in the future through the use of drugs that target the epigenetic pathways.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Qiu P, Zhang L. Identification of markers associated with global changes in DNA methylation regulation in cancers. BMC Bioinformatics 2012; 13 Suppl 13:S7. [PMID: 23320390 PMCID: PMC3426805 DOI: 10.1186/1471-2105-13-s13-s7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation exhibits different patterns in different cancers. DNA methylation rates at different genomic loci appear to be highly correlated in some samples but not in others. We call such phenomena conditional concordant relationships (CCRs). In this study, we explored DNA methylation patterns in 12 common cancers using data of 2434 patient samples collected by The Cancer Genome Atlas project. We developed an exploratory method to characterize CCRs in the methylation data and identified the 200 gene markers whose on-and-off statuses in DNA methylation are most significantly associated with drastic changes in CCRs throughout the genome. Clustering analysis of the methylation data of the 200 markers showed that they are tightly associated with cancer subtypes. We also generated a library of the significant CCRs that may be of interest to future studies of the regulation network of DNA methylation in cancer.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
30
|
Majumdar S, Buckles E, Estrada J, Koochekpour S. Aberrant DNA methylation and prostate cancer. Curr Genomics 2012; 12:486-505. [PMID: 22547956 PMCID: PMC3219844 DOI: 10.2174/138920211797904061] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 08/15/2011] [Accepted: 09/05/2011] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer, a significant contributor to morbidity and a leading cause of cancer-related death in men in Western industrialized countries. In contrast to genetic changes that vary among individual cases, somatic epigenetic alterations are early and highly consistent events. Epigenetics encompasses several different phenomena, such as DNA methylation, histone modifications, RNA interference, and genomic imprinting. Epigenetic processes regulate gene expression and can change malignancy-associated phenotypes such as growth, migration, invasion, or angiogenesis. Methylations of certain genes are associated with PCa progression. Compared to normal prostate tissues, several hypermethylated genes have also been identified in benign prostate hyperplasia, which suggests a role for aberrant methylation in this growth dysfunction. Global and gene-specific DNA methylation could be affected by environmental and dietary factors. Among other epigenetic changes, aberrant DNA methylation might have a great potential as diagnostic or prognostic marker for PCa and could be tested in tumor tissues and various body fluids (e.g., serum, urine). The DNA methylation markers are simple in nature, have high sensitivity, and could be detected either quantitatively or qualitatively. Availability of genome-wide screening methodologies also allows the identification of epigenetic signatures in high throughput population studies. Unlike irreversible genetic changes, epigenetic alterations are reversible and could be used for PCa targeted therapies.
Collapse
Affiliation(s)
- Sunipa Majumdar
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70122, USA
| | | | | | | |
Collapse
|
31
|
Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Res Cardiol 2012; 107:283. [PMID: 22791246 DOI: 10.1007/s00395-012-0283-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/15/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The present study was aimed to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). In human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells, treatment with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, we provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition.
Collapse
|
32
|
Epigenetic reprogramming of embryos derived from sperm frozen at −20°C. SCIENCE CHINA-LIFE SCIENCES 2012; 55:349-57. [DOI: 10.1007/s11427-012-4309-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 01/29/2023]
|
33
|
Duan P, Zhang Y, Han X, Liu J, Yan W, Xing Y. Effect of neuronal induction on NSE, Tau, and Oct4 promoter methylation in bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2012; 48:251-8. [PMID: 22528735 DOI: 10.1007/s11626-012-9494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/05/2012] [Indexed: 12/17/2022]
Abstract
Cell differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. The differentiation potential differences in DNA methylation patterns might function in pluripotency restriction, while tissue-specific differences might work in lineage restriction. To investigate the effects of neuronal induction on promoter methylation pattern in rat bone marrow mesenchymal stem cells (MSCs), we used bisulfite sequencing to analyze the methylation status of the promoter regions in neuron-specific enolase (NSE), microtubule-associated protein Tau, and Oct4 genes in MSCs pre- and post-chemical induction. Neurocytes from the newborn rat brains were used as control. Data showed that NSE and Tau were abundantly expressed in the brain cells and MSC-derived neurocyte-like cells as well but not in the MSCs. However, both NSE promoter (-214~+57 bp) and Tau promoter (-239~+131 bp) were hypomethylated (<4 % CpG methylation). Oct4 was expressed in MSCs, and the Oct4 promoter (-293~-85 bp) was hypermethylated (>79 % CpG methylation). Interestingly, it was found that the methylation of the locus -113 bp upstream of Oct4 transcription start site was specifically enhanced in the process of MSCs' neuronal differentiation. Further experiments in hepatocytes derived from MSCs and hepar tissue proved that the -113 bp locus methylation increased also in non-neurogenic lineages. Tfsitescan prediction showed that AP-2-alpha/gamma and Sp1 might regulate Oct4 transcription upon MSC differentiation by binding the -113 bp locus. So, we conclude that promoter methylation modifies pluripotency-specific gene, rather than regulates the expression of neural-specific genes when MSCs differentiate into neurocyte-like cells.
Collapse
Affiliation(s)
- Ping Duan
- Stem Cells Research Center, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Mealybug chromosome cycle as a paradigm of epigenetics. GENETICS RESEARCH INTERNATIONAL 2012; 2012:867390. [PMID: 22567404 PMCID: PMC3335642 DOI: 10.1155/2012/867390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/07/2011] [Accepted: 12/26/2011] [Indexed: 01/22/2023]
Abstract
Recently, epigenetics has had an ever-growing impact on research not only for its intrinsic interest but also because it has been implied in biological phenomena, such as tumor emergence and progression. The first epigenetic phenomenon to be described in the early 1960s was chromosome imprinting in some insect species (sciaridae and coccoideae). Here, we discuss recent experimental results to dissect the phenomenon of imprinted facultative heterochromatinization in Lecanoid coccids (mealybugs). In these insect species, the entire paternally derived haploid chromosome set becomes heterochromatic during embryogenesis in males. We describe the role of known epigenetic marks, such as DNA methylation and histone modifications, in this phenomenon. We then discuss the models proposed to explain the noncanonical chromosome cycle of these species.
Collapse
|
35
|
Kin conflict in insect societies: a new epigenetic perspective. Trends Ecol Evol 2012; 27:367-73. [PMID: 22483741 DOI: 10.1016/j.tree.2012.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 02/22/2012] [Accepted: 02/25/2012] [Indexed: 11/21/2022]
Abstract
The social hymenopterans (ants, wasps and bees) have all the enzymatic and genetic mechanisms necessary for the functional modification of DNA by methylation. Methylation appears to play a central role in shaping the developmental processes that give rise to the different castes. However, could DNA methylation have other roles in social insects? Theoretical arguments predict that male and female hymenopterans can be in conflict over the reproductive potential of their female offspring. An exciting prospect for future research is to examine the possibility that queens and males imprint the genomes of their gametes using DNA methylation to manipulate the reproductive potential of their progeny in ways that favour the inclusive fitness of the parent.
Collapse
|
36
|
Tucker B. Do Risk and Time Experimental Choices Represent Individual Strategies for Coping with Poverty or Conformity to Social Norms? CURRENT ANTHROPOLOGY 2012. [DOI: 10.1086/664569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
37
|
Ernberg I, Karimi M, Ekström TJ. Epigenetic mechanisms as targets and companions of viral assaults. Ann N Y Acad Sci 2012; 1230:E29-36. [DOI: 10.1111/j.1749-6632.2011.06357.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
|
39
|
Baskaev K, Garazha A, Gaifullin N, Suntsova MV, Zabolotneva AA, Buzdin AA. nMETR: technique for facile recovery of hypomethylation genomic tags. Gene 2012; 498:75-80. [PMID: 22353364 DOI: 10.1016/j.gene.2012.01.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/27/2022]
Abstract
Genome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing. We applied nMETR for human DNA using BspFNI enzyme and retrotransposon Alu-specific primers. 454-sequencing enabled identification of 1113 nMETR tag sites, of them ~65% were parts of CpG islands. Representation of reads inversely correlated with methylation levels, thus confirming nMETR fidelity. We created software that eliminates background reads and enables to map and annotate individual tags on human genome. nMETR tags may serve as the controls for large-scale epigenetic studies and for identifying unmethylated transposable elements located close to genomic CpG islands.
Collapse
Affiliation(s)
- Konstantin Baskaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow 117997, Russia
| | | | | | | | | | | |
Collapse
|
40
|
Chao SB, Guo L, Ou XH, Luo SM, Wang ZB, Schatten H, Gao GL, Sun QY. Heated spermatozoa: effects on embryonic development and epigenetics. Hum Reprod 2012; 27:1016-24. [DOI: 10.1093/humrep/des005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|