1
|
Cribbie EP, Doerr D, Chauve C. AGO, a Framework for the Reconstruction of Ancestral Syntenies and Gene Orders. Methods Mol Biol 2024; 2802:247-265. [PMID: 38819563 DOI: 10.1007/978-1-0716-3838-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Reconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial. This chapter introduces AGO, a Python-based framework aimed at creating ancestral gene order reconstruction pipelines allowing to interface and parameterize different bioinformatics tools. The authors illustrate the features of AGO by reconstructing ancestral gene orders for the X chromosome of three ancestral Anopheles species using three different pipelines. AGO is freely available at https://github.com/cchauve/AGO-pipeline .
Collapse
Affiliation(s)
- Evan P Cribbie
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel Doerr
- Department for Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research, and Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Abstract
The Small Parsimony Problem (SPP) aims at finding the gene orders at internal nodes of a given phylogenetic tree such that the overall genome rearrangement distance along the tree branches is minimized. This problem is intractable in most genome rearrangement models, especially when gene duplication and loss are considered. In this work, we describe an Integer Linear Program algorithm to solve the SPP for natural genomes, i.e. genomes that contain conserved, unique, and duplicated markers. The evolutionary model that we consider is the DCJ-indel model that includes the Double-Cut and Join rearrangement operation and the insertion and deletion of genome segments. We evaluate our algorithm on simulated data and show that it is able to reconstruct very efficiently and accurately ancestral gene orders in a very comprehensive evolutionary model.
Collapse
Affiliation(s)
- Daniel Doerr
- Faculty of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Cedric Chauve
- Department of Mathematic, Simon Fraser University, Canada
| |
Collapse
|
3
|
Zhang C, Scornavacca C, Molloy EK, Mirarab S. ASTRAL-Pro: Quartet-Based Species-Tree Inference despite Paralogy. Mol Biol Evol 2020; 37:3292-3307. [PMID: 32886770 PMCID: PMC7751180 DOI: 10.1093/molbev/msaa139] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phylogenetic inference from genome-wide data (phylogenomics) has revolutionized the study of evolution because it enables accounting for discordance among evolutionary histories across the genome. To this end, summary methods have been developed to allow accurate and scalable inference of species trees from gene trees. However, most of these methods, including the widely used ASTRAL, can only handle single-copy gene trees and do not attempt to model gene duplication and gene loss. As a result, most phylogenomic studies have focused on single-copy genes and have discarded large parts of the data. Here, we first propose a measure of quartet similarity between single-copy and multicopy trees that accounts for orthology and paralogy. We then introduce a method called ASTRAL-Pro (ASTRAL for PaRalogs and Orthologs) to find the species tree that optimizes our quartet similarity measure using dynamic programing. By studying its performance on an extensive collection of simulated data sets and on real data sets, we show that ASTRAL-Pro is more accurate than alternative methods.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of California San Diego, San Diego, CA
| | | | - Erin K Molloy
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA
| |
Collapse
|
4
|
Parey E, Louis A, Cabau C, Guiguen Y, Roest Crollius H, Berthelot C. Synteny-Guided Resolution of Gene Trees Clarifies the Functional Impact of Whole-Genome Duplications. Mol Biol Evol 2020; 37:3324-3337. [DOI: 10.1093/molbev/msaa149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Whole-genome duplications (WGDs) have major impacts on the evolution of species, as they produce new gene copies contributing substantially to adaptation, isolation, phenotypic robustness, and evolvability. They result in large, complex gene families with recurrent gene losses in descendant species that sequence-based phylogenetic methods fail to reconstruct accurately. As a result, orthologs and paralogs are difficult to identify reliably in WGD-descended species, which hinders the exploration of functional consequences of WGDs. Here, we present Synteny-guided CORrection of Paralogies and Orthologies (SCORPiOs), a novel method to reconstruct gene phylogenies in the context of a known WGD event. WGDs generate large duplicated syntenic regions, which SCORPiOs systematically leverages as a complement to sequence evolution to infer the evolutionary history of genes. We applied SCORPiOs to the 320-My-old WGD at the origin of teleost fish. We find that almost one in four teleost gene phylogenies in the Ensembl database (3,394) are inconsistent with their syntenic contexts. For 70% of these gene families (2,387), we were able to propose an improved phylogenetic tree consistent with both the molecular substitution distances and the local syntenic information. We show that these synteny-guided phylogenies are more congruent with the species tree, with sequence evolution and with expected expression conservation patterns than those produced by state-of-the-art methods. Finally, we show that synteny-guided gene trees emphasize contributions of WGD paralogs to evolutionary innovations in the teleost clade.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexandra Louis
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Hugues Roest Crollius
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Berthelot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Mane AC, Lafond M, Feijao PC, Chauve C. The distance and median problems in the single-cut-or-join model with single-gene duplications. Algorithms Mol Biol 2020; 15:8. [PMID: 32391071 PMCID: PMC7197181 DOI: 10.1186/s13015-020-00169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background. In the field of genome rearrangement algorithms, models accounting for gene duplication lead often to hard problems. For example, while computing the pairwise distance is tractable in most duplication-free models, the problem is NP-complete for most extensions of these models accounting for duplicated genes. Moreover, problems involving more than two genomes, such as the genome median and the Small Parsimony problem, are intractable for most duplication-free models, with some exceptions, for example the Single-Cut-or-Join (SCJ) model. Results. We introduce a variant of the SCJ distance that accounts for duplicated genes, in the context of directed evolution from an ancestral genome to a descendant genome where orthology relations between ancestral genes and their descendant are known. Our model includes two duplication mechanisms: single-gene tandem duplication and the creation of single-gene circular chromosomes. We prove that in this model, computing the directed distance and a parsimonious evolutionary scenario in terms of SCJ and single-gene duplication events can be done in linear time. We also show that the directed median problem is tractable for this distance, while the rooted median problem, where we assume that one of the given genomes is ancestral to the median, is NP-complete. We also describe an Integer Linear Program for solving this problem. We evaluate the directed distance and rooted median algorithms on simulated data. Conclusion. Our results provide a simple genome rearrangement model, extending the SCJ model to account for single-gene duplications, for which we prove a mix of tractability and hardness results. For the NP-complete rooted median problem, we design a simple Integer Linear Program. Our publicly available implementation of these algorithms for the directed distance and median problems allow to solve efficiently these problems on large instances.
Collapse
|
6
|
Abstract
Rapidly improving sequencing technology coupled with computational developments in sequence assembly are making reference-quality genome assembly economical. Hundreds of vertebrate genome assemblies are now publicly available, and projects are being proposed to sequence thousands of additional species in the next few years. Such dense sampling of the tree of life should give an unprecedented new understanding of evolution and allow a detailed determination of the events that led to the wealth of biodiversity around us. To gain this knowledge, these new genomes must be compared through genome alignment (at the sequence level) and comparative annotation (at the gene level). However, different alignment and annotation methods have different characteristics; before starting a comparative genomics analysis, it is important to understand the nature of, and biases and limitations inherent in, the chosen methods. This review is intended to act as a technical but high-level overview of the field that should provide this understanding. We briefly survey the state of the genome alignment and comparative annotation fields and potential future directions for these fields in a new, large-scale era of comparative genomics.
Collapse
Affiliation(s)
- Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
- 10x Genomics, Pleasanton, California 94566, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
7
|
Savinova OS, Moiseenko KV, Vavilova EA, Chulkin AM, Fedorova TV, Tyazhelova TV, Vasina DV. Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta. Front Microbiol 2019; 10:152. [PMID: 30792703 PMCID: PMC6374638 DOI: 10.3389/fmicb.2019.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Laccase is one of the oldest known and intensively studied fungal enzymes capable of oxidizing recalcitrant lignin-resembling phenolic compounds. It is currently well established that fungal genomes almost always contain several non-allelic copies of laccase genes (laccase multigene families); nevertheless, many aspects of laccase multigenicity, for example, their precise biological functions or evolutionary relationships, are mostly unknown. Here, we present a detailed evolutionary analysis of the sensu stricto laccase genes (CAZy - AA1_1) from fungi of the Polyporales order. The conducted analysis provides a better understanding of the Polyporales laccase multigenicity and allows for the systemization of the individual features of different laccase isozymes. In addition, we provide a comparison of the biochemical and catalytic properties of the four laccase isozymes from Trametes hirsuta and suggest their functional diversification within the multigene family.
Collapse
Affiliation(s)
- Olga S Savinova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Moiseenko
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Vavilova
- Laboratory of Gene Expression Optimization, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey M Chulkin
- Laboratory of Gene Expression Optimization, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Fedorova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Tyazhelova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Vasina
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
|
9
|
Jacox E, Chauve C, Szöllősi GJ, Ponty Y, Scornavacca C. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 2016; 32:2056-8. [PMID: 27153713 DOI: 10.1093/bioinformatics/btw105] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED : A gene tree-species tree reconciliation explains the evolution of a gene tree within the species tree given a model of gene-family evolution. We describe ecceTERA, a program that implements a generic parsimony reconciliation algorithm, which accounts for gene duplication, loss and transfer (DTL) as well as speciation, involving sampled and unsampled lineages, within undated, fully dated or partially dated species trees. The ecceTERA reconciliation model and algorithm generalize or improve upon most published DTL parsimony algorithms for binary species trees and binary gene trees. Moreover, ecceTERA can estimate accurate species-tree aware gene trees using amalgamation. AVAILABILITY AND IMPLEMENTATION ecceTERA is freely available under http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and can be run online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera CONTACT celine.scornavacca@umontpellier.fr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Edwin Jacox
- ISE-M, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | | | - Yann Ponty
- LIX, CNRS/Inria AMIB, Ecole Polytechnique, Palaiseau, France
| | - Celine Scornavacca
- ISE-M, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France Institut de Biologie Computationnelle (IBC), Montpellier, France
| |
Collapse
|
10
|
Semeria M, Tannier E, Guéguen L. Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies. BMC Bioinformatics 2015; 16 Suppl 14:S5. [PMID: 26452018 PMCID: PMC4603630 DOI: 10.1186/1471-2105-16-s14-s5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. RESULTS We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence.
Collapse
Affiliation(s)
- Magali Semeria
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
- INRIA Grenoble Rhône-Alpes, 655 avenue de l'Europe, 38330 Montbonnot, France
| | - Laurent Guéguen
- Laboratoire de Biométrie et Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
11
|
Duchemin W, Daubin V, Tannier E. Reconstruction of an ancestral Yersinia pestis genome and comparison with an ancient sequence. BMC Genomics 2015; 16 Suppl 10:S9. [PMID: 26450112 PMCID: PMC4603589 DOI: 10.1186/1471-2164-16-s10-s9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND We propose the computational reconstruction of a whole bacterial ancestral genome at the nucleotide scale, and its validation by a sequence of ancient DNA. This rare possibility is offered by an ancient sequence of the late middle ages plague agent. It has been hypothesized to be ancestral to extant Yersinia pestis strains based on the pattern of nucleotide substitutions. But the dynamics of indels, duplications, insertion sequences and rearrangements has impacted all genomes much more than the substitution process, which makes the ancestral reconstruction task challenging. RESULTS We use a set of gene families from 13 Yersinia species, construct reconciled phylogenies for all of them, and determine gene orders in ancestral species. Gene trees integrate information from the sequence, the species tree and gene order. We reconstruct ancestral sequences for ancestral genic and intergenic regions, providing nearly a complete genome sequence for the ancestor, containing a chromosome and three plasmids. CONCLUSION The comparison of the ancestral and ancient sequences provides a unique opportunity to assess the quality of ancestral genome reconstruction methods. But the quality of the sequencing and assembly of the ancient sequence can also be questioned by this comparison.
Collapse
Affiliation(s)
- Wandrille Duchemin
- Laboratoire de Biométrie et Biologie Évolutive, LBBE, UMR CNRS 5558, University of Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| | - Vincent Daubin
- Laboratoire de Biométrie et Biologie Évolutive, LBBE, UMR CNRS 5558, University of Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
| | - Eric Tannier
- Laboratoire de Biométrie et Biologie Évolutive, LBBE, UMR CNRS 5558, University of Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France
- Institut National de Recherche en Informatique et en Automatique (INRIA) Grenoble Rhône-Alpes, 655 avenue de l'Europe, 38330 Montbonnot, France
| |
Collapse
|