1
|
Al-Garib S, Gielkens A, Gruys E, Kochi G. Review of Newcastle disease virus with particular references to immunity and vaccination. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20030011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S.O. Al-Garib
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Al-Fateh University, P.O. Box 13662 Tripoli, Libya
| | - A.L.J. Gielkens
- Institute for Animal Science and Health (ID-Lelystad), P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - E. Gruys
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
| | - G. Kochi
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
| |
Collapse
|
2
|
Sheng Y, Wang K, Lu Q, Ji P, Liu B, Zhu J, Liu Q, Sun Y, Zhang J, Zhou EM, Zhao Q. Nanobody-horseradish peroxidase fusion protein as an ultrasensitive probe to detect antibodies against Newcastle disease virus in the immunoassay. J Nanobiotechnology 2019; 17:35. [PMID: 30823927 PMCID: PMC6396497 DOI: 10.1186/s12951-019-0468-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sensitive and specific antibodies can be used as essential probes to develop competitive enzyme-linked immunosorbent assay (cELISA). However, traditional antibodies are difficult to produce, only available in limited quantities, and ineffective as enzymatic labels. Nanobodies, which are single-domain antibodies (sdAbs), offer an alternative, more promising tool to circumvent these limitations. In the present work, a cELISA using nanobody-horseradish peroxidase (HRP) fusion protein firstly designed as a probe was developed for detecting anti-Newcastle disease virus (NDV) antibodies in chicken sera. RESULTS In the study, a platform for the rapid and simple production of nanobody-HRP fusion protein was constructed. First, a total of 9 anti-NDV-NP protein nanobodies were screened from a immunised Bactrian camel. Then, the Nb5-HRP fusions were produced with the platform and used for the first time as sensitive reagents for developing cELISA to detect anti-NDV antibodies. The cut-off value of the cELISA was 18%, and the sensitivity and specificity were respectively 100% and 98.6%. The HI test and commercial ELISA kit (IDEXX) separately agreed 97.83% and 98.1% with cELISA when testing clinical chicken sera and both agreed 100% when testing egg yolks. However, for detecting anti-NDV antibodies in the sequential sera from the challenged chickens, cELISA demonstrated to be more sensitive than the HI test and commercial ELISA kit. Moreover, a close correlation (R2 = 0.914) was found between the percent competitive inhibition values of cELISA and HI titers. CONCLUSIONS A platform was successfully designed to easily and rapidly produce the nanobody-HRP fusion protein, which was the first time to be used as reagents for establishing cELISA. Results suggest that the platform supports the development of a cELISA with high sensitivity, simplicity, and rapid detection of anti-NDV antibodies. Overall, we believe that the platform based on nanobody-HRP fusions can be widely used for future investigations and treatment other diseases and viruses.
Collapse
Affiliation(s)
- Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Qizhong Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Qingyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jingfei Zhang
- Xi'an Center for Animal Disease Control and Prevention, Xi'an, 710061, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Selim KM, Selim A, Arafa A, Hussein HA, Elsanousi AA. Molecular characterization of full fusion protein (F) of Newcastle disease virus genotype VIId isolated from Egypt during 2012-2016. Vet World 2018; 11:930-938. [PMID: 30147262 PMCID: PMC6097568 DOI: 10.14202/vetworld.2018.930-938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/03/2023] Open
Abstract
Aim: The aim of this work was to study the full F gene sequence of Newcastle disease virus (NDV) in regard to pathotyping and genotyping and to study the evolution of this NDV in Egypt. Materials and Methods: The present study was conducted using samples from seven suspected NDV flocks of vaccinated chickens during 2012-2016 from six governorates in Egypt. The NDV was successfully isolated from pathological specimens through inoculation in specific pathogen-free embryonated chicken eggs. Results: Pathogenicity of the NDV isolates has been estimated through intracerebral pathogenicity index and ranged from 1.66 to 1.73 which indicates the velogenic type of NDV isolates. Pathotyping and genotyping of these isolates were done through sequencing of full-length F gene. Results indicated that the seven NDV isolates showed characteristic cleavage site motif (112RRQKRF117) for the velogenic strains of NDV. Phylogenetic analysis of the F gene clustered these isolates within Group I of genotype VIId within Israeli strains NDV/IS/2015, NDV-Ch/SD883, and most of the Middle East strains. Six of seven sequenced isolates have six potential N-linked glycosylation sites. The neutralization epitope on the five antigenic sites of fusion is conserved in all Egyptian strains of this study except NDV-KFR-B7-2012 which has a substitution at D 170 N in epitope A4. In all our strains, 10 cysteine residues are recorded, except one loss of cysteine at residue 370 in both NDV-EG-35-2014 and NDV-GHB-328F-2016. Conclusion: All viruses in this study have 52 amino acid substitutions within fusion gene in compared with Lasota strain that reveals importance for its antigenic and structural function. The present work highlights the important need to sequence F gene of NDV genotype VIId to investigate the evolution of this NDV in Egypt.
Collapse
Affiliation(s)
- Karim M Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Abdullah Selim
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Abdelsatar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A Elsanousi
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Wakamatsu N, King DJ, Seal BS, Brown CC. Detection of Newcastle disease virus RNA by reverse transcription-polymerase chain reaction using formalin-fixed, paraffin-embedded tissue and comparison with immunohistochemistry and in situ hybridization. J Vet Diagn Invest 2007; 19:396-400. [PMID: 17609350 DOI: 10.1177/104063870701900410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The usefulness of reverse transcription-polymerase chain reaction (RT-PCR) from formalin-fixed, paraffin-embedded (FFPE) tissues was examined and compared to the immunohistochemistry (IHC) and in situ hybridization (ISH) assays for detection of Newcastle disease virus (NDV). Spleen and lung tissues were collected from chickens experimentally infected with either of 2 NDV isolates: a low virulent virus (LaSota) and a virulent virus (from the 2002-2003 California outbreak). The tissues were harvested immediately postmortem and fixed in 10% neutral buffered formalin for approximately 52 hours. Also, just before euthanasia, oral and cloacal swabs were collected for virus isolation. RNA was obtained from the FFPE tissues by digestion with proteinase K and subsequent extraction with phenol, chloroform, and isoamyl alcohol. By seminested RT-PCR with primers for the NDV matrix gene, a 232-base pair (bp) product was generated and visualized by electrophoresis. The results of PCR were compared to those of IHC for viral nucleoprotein and ISH for matrix gene (850 bp) on 3-microm sections and to those of virus isolation from swabs. All samples from infected chickens were positive by RT-PCR, including samples that were negative by both IHC and ISH. The RT-PCR positives included tissue from chickens that were no longer shedding virus detectable by virus isolation. The RT-PCR was an effective and sensitive method to detect NDV in FFPE tissues. To the authors' knowledge, this is the first report of NDV detection in FFPE tissues as a diagnostic approach possibly suitable for archival materials.
Collapse
Affiliation(s)
- Nobuko Wakamatsu
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-7388, USA
| | | | | | | |
Collapse
|
5
|
Kho CL, Tan WS, Tey BT, Yusoff K. Newcastle disease virus nucleocapsid protein: self-assembly and length-determination domains. J Gen Virol 2003; 84:2163-2168. [PMID: 12867648 DOI: 10.1099/vir.0.19107-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid protein (NP) of Newcastle disease virus expressed in E. coli assembled as ring- and herringbone-like particles. In order to identify the contiguous NP sequence essential for assembly of these particles, 11 N- or C-terminally deleted NP mutants were constructed and their ability to self-assemble was tested. The results indicate that a large part of the NP N-terminal end, encompassing amino acids 1 to 375, is required for proper folding to form a herringbone-like structure. In contrast, the C-terminal end covering amino acids 376 to 489 was dispensable for the formation of herringbone-like particles. A region located between amino acids 375 to 439 may play a role in regulating the length of the herringbone-like particles. Mutants with amino acid deletions further from the C-terminal end (84, 98, 109 and 114 amino acids) tended to form longer particles compared to mutants with shorter deletions (25 and 49 amino acids).
Collapse
Affiliation(s)
- Chiew Ling Kho
- Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Wen Siang Tan
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Biochemistry and Microbiology, Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|