1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Jacobs LF. The navigational nose: a new hypothesis for the function of the human external pyramid. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb186924. [PMID: 30728230 DOI: 10.1242/jeb.186924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
One of the outstanding questions in evolution is why Homo erectus became the first primate species to evolve the external pyramid, i.e. an external nose. The accepted hypothesis for this trait has been its role in respiration, to warm and humidify air as it is inspired. However, new studies testing the key assumptions of the conditioning hypothesis, such as the importance of turbulence to enhance heat and moisture exchange, have called this hypothesis into question. The human nose has two functions, however, respiration and olfaction. It is thus also possible that the external nose evolved in response to selection for olfaction. The genus Homo had many adaptations for long-distance locomotion, which allowed Homo erectus to greatly expand its species range, from Africa to Asia. Long-distance navigation in birds and other species is often accomplished by orientation to environmental odors. Such olfactory navigation, in turn, is enhanced by stereo olfaction, made possible by the separation of the olfactory sensors. By these principles, the human external nose could have evolved to separate olfactory inputs to enhance stereo olfaction. This could also explain why nose shape later became so variable: as humans became more sedentary in the Neolithic, a decreasing need for long-distance movements could have been replaced by selection for other olfactory functions, such as detecting disease, that would have been critical to survival in newly dense human settlements.
Collapse
Affiliation(s)
- Lucia F Jacobs
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
3
|
Naviaux RK. Metabolic features and regulation of the healing cycle-A new model for chronic disease pathogenesis and treatment. Mitochondrion 2018; 46:278-297. [PMID: 30099222 DOI: 10.1016/j.mito.2018.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Without healing, multicellular life on Earth would not exist. Without healing, one injury predisposes to another, leading to disability, chronic disease, accelerated aging, and death. Over 60% of adults and 30% of children and teens in the United States now live with a chronic illness. Advances in mass spectrometry and metabolomics have given scientists a new lens for studying health and disease. This study defines the healing cycle in metabolic terms and reframes the pathophysiology of chronic illness as the result of metabolic signaling abnormalities that block healing and cause the normal stages of the cell danger response (CDR) to persist abnormally. Once an injury occurs, active progress through the stages of healing is driven by sequential changes in cellular bioenergetics and the disposition of oxygen and carbon skeletons used for fuel, signaling, defense, repair, and recovery. >100 chronic illnesses can be organized into three persistent stages of the CDR. One hundred and two targetable chemosensory G-protein coupled and ionotropic receptors are presented that regulate the CDR and healing. Metabokines are signaling molecules derived from metabolism that regulate these receptors. Reframing the pathogenesis of chronic illness in this way, as a systems problem that maintains disease, rather than focusing on remote trigger(s) that caused the initial injury, permits new research to focus on novel signaling therapies to unblock the healing cycle, and restore health when other approaches have failed.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC#8467, San Diego, CA 92103, United States.
| |
Collapse
|
4
|
Abstract
Evolution sculpts the olfactory nervous system in response to the unique sensory challenges facing each species. In vertebrates, dramatic and diverse adaptations to the chemical environment are possible because of the hierarchical structure of the olfactory receptor (OR) gene superfamily: expansion or contraction of OR subfamilies accompanies major changes in habitat and lifestyle; independent selection on OR subfamilies can permit local adaptation or conserved chemical communication; and genetic variation in single OR genes can alter odor percepts and behaviors driven by precise chemical cues. However, this genetic flexibility contrasts with the relatively fixed neural architecture of the vertebrate olfactory system, which requires that new olfactory receptors integrate into segregated and functionally distinct neural pathways. This organization allows evolution to couple critical chemical signals with selectively advantageous responses, but also constrains relationships between olfactory receptors and behavior. The coevolution of the OR repertoire and the olfactory system therefore reveals general principles of how the brain solves specific sensory problems and how it adapts to new ones.
Collapse
|
5
|
Abstract
Taste is one of the fundamental senses, and it is essential for our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Taste buds, which are clusters of neuroepithelial receptor cells, are housed in highly organized structures called taste papillae in the oral cavity. Whereas the overall structure of the taste periphery is conserved in almost all vertebrates examined to date, the anatomical, histological, and cell biological, as well as potentially the molecular details of taste buds in the oral cavity are diverse across species and even among individuals. In mammals, several types of gustatory papillae reside on the tongue in highly ordered arrangements, and the patterning and distribution of the mature papillae depend on coordinated molecular events in embryogenesis. In this review, we highlight new findings in the field of taste development, including how taste buds are patterned and how taste cell fate is regulated. We discuss whether a specialized taste bud stem cell population exists and how extrinsic signals can define which cell lineages are generated. We also address the question of whether molecular regulation of taste cell renewal is analogous to that of taste bud development. Finally, we conclude with suggestions for future directions, including the potential influence of the maternal diet and maternal health on the sense of taste in utero.
Collapse
Affiliation(s)
- Linda A Barlow
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA; Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Ophir D Klein
- Departments of Orofacial Sciences and Pediatrics, University of California San Francisco, San Francisco, California, USA; Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, California, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Yoder AD, Larsen PA. The molecular evolutionary dynamics of the vomeronasal receptor (class 1) genes in primates: a gene family on the verge of a functional breakdown. Front Neuroanat 2014; 8:153. [PMID: 25565978 PMCID: PMC4264469 DOI: 10.3389/fnana.2014.00153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/25/2014] [Indexed: 01/24/2023] Open
Abstract
Olfaction plays a critical role in both survival of the individual and in the propagation of species. Studies from across the mammalian clade have found a remarkable correlation between organismal lifestyle and molecular evolutionary properties of receptor genes in both the main olfactory system (MOS) and the vomeronasal system (VNS). When a large proportion of intact (and putatively functional) copies is observed, the inference is made that a particular mode of chemoreception is critical for an organism’s fit to its environment and is thus under strong positive selection. Conversely, when the receptors in question show a disproportionately large number of pseudogene copies, this contraction is interpreted as evidence of relaxed selection potentially leading to gene family extinction. Notably, it appears that a risk factor for gene family extinction is a high rate of nonsynonymous substitution. A survey of intact vs. pseudogene copies among primate vomeronasal receptor Class one genes (V1Rs) appears to substantiate this hypothesis. Molecular evolutionary complexities in the V1R gene family combine rapid rates of gene duplication, gene conversion, lineage-specific expansions, deletions, and/or pseudogenization. An intricate mix of phylogenetic footprints and current adaptive landscapes have left their mark on primate V1Rs suggesting that the primate clade offers an ideal model system for exploring the molecular evolutionary and functional properties of the VNS of mammals. Primate V1Rs tell a story of ancestral function and divergent selection as species have moved into ever diversifying adaptive regimes. The sensitivity to functional collapse in these genes, consequent to their precariously high rates of nonsynonymous substitution, confer a remarkable capacity to reveal the lifestyles of the genomes that they presently occupy as well as those of their ancestors.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University Durham, NC, USA
| | | |
Collapse
|
7
|
Yuan TF, Ding F, Guo B. Tears stop the “pedophile” in mice: involvement of the vomeronasal system. Acta Ethol 2014. [DOI: 10.1007/s10211-014-0202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Abstract
In the last decade, basic research in chemoreceptor genetics and neurobiology have revolutionized our understanding of individual differences in chemosensation. From an evolutionary perspective, chemosensory variations appear to have arisen in response to different living environments, generally in the avoidance of toxins and to better detect vital food sources. Today, it is often assumed that these differences may drive variable food preferences and choices, with downstream effects on health and wellness. A growing body of evidence indicates chemosensory variation is far more complex than previously believed. However, just because a genetic polymorphism results in altered receptor function in cultured cells or even behavioral phenotypes in the laboratory, this variation may not be sufficient to influence food choice in free living humans. Still, there is ample evidence to indicate allelic variation in TAS2R38 predicts variation in bitterness of synthetic pharmaceuticals (e.g., propylthiouracil) and natural plant compounds (e.g., goitrin), and this variation associates with differential intake of alcohol and vegetables. Further, this is only one of 25 unique bitter taste genes (TAS2Rs) in humans, and emerging evidence suggests other TAS2Rs may also contain polymorphisms that a functional with respect to ingestive behavior. For example, TAS2R16 polymorphisms are linked to the bitterness of naturally occurring plant compounds and alcoholic beverage intake, a TAS2R19 polymorphism predicts differences in quinine bitterness and grapefruit bitterness and liking, and TAS2R31 polymorphisms associate with differential bitterness of plant compounds like aristolochic acid and the sulfonyl amide sweeteners saccharin and acesulfame-K. More critically with respect to food choices, these polymorphisms may vary independently from each other within and across individuals, meaning a monolithic one-size-fits-all approach to bitterness needs to be abandoned. Nor are genetic differences restricted to bitterness. Perceptual variation has also been associated with polymorphisms in genes involved in odors associated with meat defects (boar taint), green/grassy notes, and cilantro, as well as umami and sweet tastes (TAS1R1/2/3). Here, a short primer on receptor genetics is provided, followed by a summary of current knowledge, and implications for human ingestive behavior are discussed.
Collapse
|
9
|
Chamero P, Leinders-Zufall T, Zufall F. From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 2012; 35:597-606. [PMID: 22658923 DOI: 10.1016/j.tins.2012.04.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/22/2022]
Abstract
The ability to distinguish molecular cues emitted by other individuals is a fundamental feature of social interactions such as finding and identifying a mate, establishing social hierarchies, and initiating interspecies defensive behaviors. In rodents, this ability involves the vomeronasal organ (VNO), a distinct chemoreceptive structure that is part of the olfactory system. Recent insights have led to unprecedented progress in identifying ligand and receptor families underlying vomeronasal recognition, characterizing the behavioral consequences caused by VNO activation, and defining higher neural circuits underlying the initiation of instinctive behaviors such as aggression. Here, we review such findings and discuss future areas for investigation, including large-scale mapping studies, immune system-VNO interactions, in vivo recording of neural activity, and optogenetic alteration of sexual and social behaviors.
Collapse
Affiliation(s)
- Pablo Chamero
- Department of Physiology, University of Saarland School of Medicine, D-66424 Homburg, Germany
| | | | | |
Collapse
|