1
|
Diaz RR, Savardekar AR, Brougham JR, Terrell D, Sin A. Investigating the efficacy of allograft cellular bone matrix for spinal fusion: a systematic review of the literature. Neurosurg Focus 2021; 50:E11. [PMID: 34062505 DOI: 10.3171/2021.3.focus2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The use of allograft cellular bone matrices (ACBMs) in spinal fusion has expanded rapidly over the last decade. Despite little objective data on its effectiveness, ACBM use has replaced the use of traditional autograft techniques, namely iliac crest bone graft (ICBG), in many centers. METHODS In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic review was conducted of the PubMed, Cochrane Library, Scopus, and Web of Science databases of English-language articles over the time period from January 2001 to December 2020 to objectively assess the effectiveness of ACBMs, with an emphasis on the level of industry involvement in the current body of literature. RESULTS Limited animal studies (n = 5) demonstrate the efficacy of ACBMs in spinal fusion, with either equivalent or increased rates of fusion compared to autograft. Clinical human studies utilizing ACBMs as bone graft expanders or bone graft substitutes (n = 5 for the cervical spine and n = 8 for the lumbar spine) demonstrate the safety of ACBMs in spinal fusion, but fail to provide conclusive level I, II, or III evidence for its efficacy. Additionally, human studies are plagued with several limiting factors, such as small sample size, lack of prospective design, lack of randomization, absence of standardized assessment of fusion, and presence of industry support/relevant conflict of interest. CONCLUSIONS There exist very few objective, unbiased human clinical studies demonstrating ACBM effectiveness or superiority in spinal fusion. Impartial, well-designed prospective studies are needed to offer evidence-based best practices to patients in this domain.
Collapse
|
2
|
Abstract
BACKGROUND This manuscript is a review of the literature investigating the use of mesenchymal stem cells (MSCs) being applied in the setting of spinal fusion surgery. We mention the rates of pseudarthrosis, discuss current bone grafting options, and examine the preclinical and clinical outcomes of utilizing MSCs to assist in successfully fusing the spine. METHODS A thorough literature review was conducted to look at current and previous preclinical and clinical studies using stem cells for spinal fusion augmentation. Searches for PubMed/MEDLINE and ClinicalTrials.gov through January 2021 were conducted for literature mentioning stem cells and spinal fusion. RESULTS All preclinical and clinical studies investigating MSC use in spinal fusion were examined. We found 19 preclinical and 17 clinical studies. The majority of studies, both preclinical and clinical, were heterogeneous in design due to different osteoconductive scaffolds, cells, and techniques used. Preclinical studies showed promising outcomes in animal models when using appropriate osteoconductive scaffolds and factors for osteogenic differentiation. Similarly, clinical studies have promising outcomes but differ in their methodologies, surgical techniques, and materials used, making it difficult to adequately compare between the studies. CONCLUSION MSCs may be a promising option to use to augment grafting for spinal fusion surgery. MSCs must be used with appropriate osteoconductive scaffolds. Cell-based allografts and the optimization of their use have yet to be fully elucidated. Further studies are necessary to determine the efficacy of MSCs with different osteoconductive scaffolds and growth/osteogenic differentiation factors. LEVEL OF EVIDENCE 3.
Collapse
Affiliation(s)
- Stephen R Stephan
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E Kanim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
3
|
Shum LC, Hollenberg AM, Baldwin AL, Kalicharan BH, Maqsoodi N, Rubery PT, Mesfin A, Eliseev RA. Role of oxidative metabolism in osseointegration during spinal fusion. PLoS One 2020; 15:e0241998. [PMID: 33166330 PMCID: PMC7652281 DOI: 10.1371/journal.pone.0241998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/24/2020] [Indexed: 12/05/2022] Open
Abstract
Spinal fusion is a commonly performed orthopedic surgery. Autologous bone graft obtained from the iliac crest is frequently employed to perform spinal fusion. Osteogenic bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) are believed to be responsible for new bone formation and development of the bridging bone during spinal fusion, as these cells are located in both the graft and at the site of fusion. Our previous work revealed the importance of mitochondrial oxidative metabolism in osteogenic differentiation of BMSCs. Our objective here was to determine the impact of BMSC oxidative metabolism on osseointegration of the graft during spinal fusion. The first part of the study was focused on correlating oxidative metabolism in bone graft BMSCs to radiographic outcomes of spinal fusion in human patients. The second part of the study was focused on mechanistically proving the role of BMSC oxidative metabolism in osseointegration during spinal fusion using a genetic mouse model. Patients’ iliac crest-derived graft BMSCs were identified by surface markers. Mitochondrial oxidative function was detected in BMSCs with the potentiometric probe, CMXRos. Spinal fusion radiographic outcomes, determined by the Lenke grade, were correlated to CMXRos signal in BMSCs. A genetic model of high oxidative metabolism, cyclophilin D knockout (CypD KO), was used to perform spinal fusion in mice. Graft osseointegration in mice was assessed with micro-computed tomography. Our study revealed that higher CMXRos signal in patients’ BMSCs correlated with a higher Lenke grade. Mice with higher oxidative metabolism (CypD KO) had greater mineralization of the spinal fusion bridge, as compared to the control mice. We therefore conclude that higher oxidative metabolism in BMSCs correlates with better spinal fusion outcomes in both human patients and in a mouse model. Altogether, our study suggests that promoting oxidative metabolism in osteogenic cells could improve spinal fusion outcomes for patients.
Collapse
Affiliation(s)
- Laura C. Shum
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Alex M. Hollenberg
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Avionna L. Baldwin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Brianna H. Kalicharan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Noorullah Maqsoodi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Paul T. Rubery
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Murata K, Fujibayashi S, Otsuki B, Shimizu T, Matsuda S. Repair of Iliac Crest Defects with a Hydroxyapatite/Collagen Composite. Asian Spine J 2020; 14:808-813. [PMID: 32429017 PMCID: PMC7788373 DOI: 10.31616/asj.2019.0310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022] Open
Abstract
Study Design Retrospective study. Purpose This study aimed to assess the effect of refilling with hydroxyapatite/collagen (HAp/Col) composite on an iliac crest defect after spinal fusion. Overview of Literature The use of iliac crest bone graft has been the gold standard in spinal fusion for a long time because of its biological and non-immunologic properties. Few reports have addressed how bone defects recover after iliac crest bone harvest following spinal fusion. Methods Cancellous bone was collected from the anterior iliac crest during lateral interbody fusion (LIF), and the bone void of the ilium was refilled with a porous HAp/Col composite. We assessed bone recovery using computed tomography (CT). From the 74 patients who underwent LIF between January 2015 and December 2016, we included 49 patients whose iliac crest could be evaluated using CT at 3 months and 1 year after the surgery. Results Bone defects decreased in a time-dependent manner after the surgery. Cortical closure was observed in 28.5% of the cases 3 months after the surgery; at 1 year postoperatively, 95.9% of the patients had cortical closure. Complete repair of the cancellous bone was achieved in 57.1% of the patients at 3 months after the surgery and in 95.9% at 1 year after the surgery. There were no significant hematomas, infections, iliac crest fractures, or soft tissue herniation. Conclusions Radiographic recovery of cortical and cancellous bone defects was achieved with high probability via refilling with HAp/Col composite over the 1-year period.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shunsuke Fujibayashi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bungo Otsuki
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayoshi Shimizu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Duarte RM, Varanda P, Reis RL, Duarte ARC, Correia-Pinto J. Biomaterials and Bioactive Agents in Spinal Fusion. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:540-551. [DOI: 10.1089/ten.teb.2017.0072] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rui M. Duarte
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Pedro Varanda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopedic Surgery Department, Hospital de Braga, Braga, Portugal
| | - Rui L. Reis
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Ana Rita C. Duarte
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Portugal
| | - Jorge Correia-Pinto
- School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Pediatric Surgery Department, Hospital de Braga, Braga, Portugal
| |
Collapse
|
6
|
Abstract
STUDY DESIGN Review of literature. OBJECTIVES This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. METHODS A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. RESULTS Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell-based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro-computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. CONCLUSIONS It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion.
Collapse
Affiliation(s)
- Michael A. Robbins
- University of California Davis Medical Center, Sacramento, CA, USA,Michael A. Robbins, Department of Orthopaedic Surgery, Mail Code MP240, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | - Adam M. Wegner
- University of California Davis Medical Center, Sacramento, CA, USA
| | | |
Collapse
|
7
|
Van Roosbroeck K, Verstovsek S, Calin GA. Long non-coding RNAs in primary myelofibrosis: the dark matter in hematopoietic progenitor cells? Leuk Lymphoma 2015; 56:281-2. [PMID: 25093380 DOI: 10.3109/10428194.2014.939972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | |
Collapse
|
8
|
Spetzger U, Von Schilling A, Winkler G, Wahrburg J, König A. The past, present and future of minimally invasive spine surgery: a review and speculative outlook. MINIM INVASIV THER 2014; 22:227-41. [PMID: 23964794 DOI: 10.3109/13645706.2013.821414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last 25 years of spinal surgery, tremendous improvements have been made. The development of smart technologies with the overall aim of reducing surgical trauma has resulted in the concept of minimally invasive surgical techniques. Enhancements in microsurgery, endoscopy and various percutaneous techniques, as well as improvement of implant materials, have proven to be milestones. The advancement of training of spine surgeons and the integration of image guidance with precise intraoperative imaging, computer- and robot-assisted treatment modalities constitute the era of reducing treatment morbidity in spinal surgery. This progress has led to the present era of preserving spinal function. The promise of the continuing evolution of spinal surgery, the era of restoring spinal function, already appears on the horizon. The current state of minimally invasive spine surgery is the result of a long-lasting and consecutive development of smart technologies, along with stringent surgical training practices and the improvement of instruments and techniques. However, much effort in research and development is still mandatory to establish, maintain and evolve minimally invasive spine surgery. The education and training of the next generation of highly specialized spine surgeons is another key point. This paper will give an overview of surgical techniques and methods of the past 25 years, examine what is in place today, and suggest a projection for spine surgery in the coming 25 years by drawing a connection from the past to the future.
Collapse
Affiliation(s)
- Uwe Spetzger
- Department of Neurosurgery, Klinikum Karlsruhe, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|