1
|
Schmidt R, Welzel B, Merten A, Naundorf H, Löscher W. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Exp Neurol 2024; 383:115042. [PMID: 39505250 DOI: 10.1016/j.expneurol.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Birth asphyxia (BA) and subsequent hypoxic-ischemic encephalopathy (HIE) is one of the most serious birth complications affecting full-term infants and can result in severe disabilities including mental retardation, cerebral palsy, and epilepsy. Animal models of BA and HIE are important to characterize the functional and behavioral correlates of injury, explore cellular and molecular mechanisms, and assess the potential of novel therapeutic strategies. Here we used a non-invasive, physiologically validated rat model of BA and acute neonatal seizures that mimics many features of BA and HIE in human infants to study (i) the temporal development of epilepsy with spontaneous recurrent seizures (SRS) in the weeks and months after the initial brain injury, (ii) alterations in seizure threshold and hippocampal EEG that may precede the onset of SRS, and (iii) the effect of prophylactic treatment with midazolam. For this purpose, a total of 89 rat pups underwent asphyxia or sham asphyxia at postnatal day 11 and were examined over 8-10.5 months. In vehicle-treated animals, the incidence of electroclinical SRS progressively increased from 0 % at 2.5 months to 50 % at 6.5 months, 75 % at 8.5 months, and > 80 % at 10.5 months after asphyxia. Unexpectedly, post-asphyxial rats did not differ from sham-exposed rats in seizure threshold or interictal epileptiform discharges in the EEG. Treatment with midazolam (1 mg/kg i.p.) after asphyxia, which suppressed acute symptomatic neonatal seizures in about 60 % of the rat pups, significantly reduced the incidence of SRS regardless of its effect on neonatal seizures. This antiepileptogenic effect of midazolam adds to the recently reported prophylactic effects of this drug on BA-induced neuroinflammation, brain damage, behavioral alterations, and cognitive impairment in the rat asphyxia model of HIE.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annika Merten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Schmidt R, Welzel B, Löscher W. Effects of season, daytime, sex, and stress on the incidence, latency, frequency, severity, and duration of neonatal seizures in a rat model of birth asphyxia. Epilepsy Behav 2023; 147:109415. [PMID: 37729684 DOI: 10.1016/j.yebeh.2023.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023]
Abstract
Neonatal seizures are common in newborn infants after birth asphyxia. They occur more frequently in male than female neonates, but it is not known whether sex also affects seizure severity or duration. Furthermore, although stress and diurnal, ultradian, circadian, or multidien cycles are known to affect epileptic seizures in adults, their potential impact on neonatal seizures is not understood. This prompted us to examine the effects of season, daytime, sex, and stress on neonatal seizures in a rat model of birth asphyxia. Seizures monitored in 176 rat pups exposed to asphyxia on 40 experimental days performed over 3 years were evaluated. All rat pups exhibited seizures when exposed to asphyxia at postnatal day 11 (P11), which in terms of cortical development corresponds to term human babies. A first examination of these data indicated a seasonal variation, with the highest seizure severity in the spring. Sex and daytime did not affect seizure characteristics. However, when rat pups were subdivided into animals that were exposed to acute (short-term) stress after asphyxia (restraint and i.p. injection of vehicle) and animals that were not exposed to this stress, the seizures in stress-exposed rats were more severe but less frequent. Acute stress induced an increase in hippocampal microglia density in sham-exposed rat pups, which may have an additive effect on microglia activation induced by asphyxia. When seasonal data were separately analyzed for stress-exposed vs. non-stress-exposed rat pups, no significant seasonal variation was observed. This study illustrates that without a detailed analysis of all factors, the data would have erroneously indicated significant seasonal variability in the severity of neonatal seizures. Instead, the study demonstrates that even mild, short-lasting postnatal stress has a profound effect on asphyxia-induced seizures, most likely by increasing the activity of the hypothalamic-pituitary-adrenal axis. It will be interesting to examine how postnatal stress affects the treatment and adverse outcomes of birth asphyxia and neonatal seizures in the rat model used here.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany
| | - Björn Welzel
- Center for Systems Neuroscience Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Harshaw C, Warner AG. Interleukin-1β-induced inflammation and acetaminophen during infancy: Distinct and interactive effects on social-emotional and repetitive behavior in C57BL/6J mice. Pharmacol Biochem Behav 2022; 220:173463. [PMID: 36100070 DOI: 10.1016/j.pbb.2022.173463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Acetaminophen (APAP) exposure early in life has been associated with increased risk of neurodevelopmental disorders in epidemiological studies. In rodent models, early-life APAP has similarly been shown to produce long-term changes in brain and behavior, including altered activity levels and social behavior. Most rodent studies to date have, nevertheless, attempted to model early-life APAP without considering that most APAP exposure occurs in a context of immune activation and/or fever. To mimic the repeated infections common during infancy, we employed the cytokine interleukin-1β (IL-1β) to induce immune activation three times during early postnatal development (i.e., day 5, 8, and 11). On these days, C57BL/6J pups were administered either IL-1β (0.2 μg/kg) or saline vehicle followed, after 45 min, by either APAP (103.9 mg/kg) or vehicle. Mice were subsequently administered a battery of tests of social-emotional and repetitive behavior. A number of distinct long-term effects of IL-1β and APAP treatments were found, including sex-specific shifts in repetitive behavior and emotional hyperthermia following early-life IL-1β and increased social caution in males following early-life APAP. We also observed significant interaction between IL-1β and APAP: as adults, 'two-hit' IL-1β + APAP females displayed greater anxiety-related thigmotaxis across a number of tests, including an open field. 'Two hit' males, in turn, showed elevated levels of avoidance of an unfamiliar social partner during a social interaction test. Our results highlight that IL-1β-induced inflammation and APAP have both distinct effects and significant interactions during early life, with enduring sex-specific effects on phenotypes relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Anna G Warner
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| |
Collapse
|
4
|
Gustison ML, Borjon JI, Takahashi DY, Ghazanfar AA. Vocal and locomotor coordination develops in association with the autonomic nervous system. eLife 2019; 8:e41853. [PMID: 31310236 PMCID: PMC6684270 DOI: 10.7554/elife.41853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/06/2019] [Indexed: 11/13/2022] Open
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Collapse
Affiliation(s)
- Morgan L Gustison
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
| |
Collapse
|
5
|
Isolation calls in house mouse pups: Individual consistency across time and situations. Dev Psychobiol 2019; 61:1135-1145. [DOI: 10.1002/dev.21884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
|
6
|
Harshaw C, Leffel JK, Alberts JR. Oxytocin and the warm outer glow: Thermoregulatory deficits cause huddling abnormalities in oxytocin-deficient mouse pups. Horm Behav 2018; 98:145-158. [PMID: 29277701 PMCID: PMC5828998 DOI: 10.1016/j.yhbeh.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Oxytocin is a social and reproductive hormone that also plays critical roles in a range of homeostatic processes, including thermoregulation. Here, we examine the role of oxytocin (OT) as a mediator of brown adipose tissue (BAT) thermogenesis, cold-induced huddling, and thermotaxis in eight-day-old (PD8) OT 'knock out' (OTKO) mouse pups. We tested OTKO and wildtype (WT) pups in single- and mixed-genotype groups of six, exposing these to a period of ambient warmth (~35°C) followed by a period of cold (~21.5°C). Whether huddling exclusively with other OTKO or alongside WT pups, OTKO pups showed reduced BAT thermogenesis and were significantly cooler when cold-challenged. Huddles of OTKO pups were also significantly less cohesive than WT huddles during cooling, suggesting that thermoregulatory deficits contribute to contact abnormalities in OTKO pups. To further explore this issue, we examined thermotaxis in individuals and groups of four OTKO or WT pups placed on the cool end of a thermocline and permitted to freely locomote for 2h. When tested individually, male OTKO pups displayed abnormal thermotaxis, taking significantly longer to move up the thermocline and settling upon significantly lower temperatures than WT pups during the 2h test. OTKO mouse pups thus appear to have deficits in both thermogenesis and thermotaxis-the latter deficit being specific to males. Our results add to a growing body of work indicating that OT plays critical roles in thermoregulation and also highlight the entanglement of social and thermoregulatory processes in small mammals such as mice.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States; Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Joseph K Leffel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Alberts
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
7
|
Shelton DS, Alberts JR. Development of behavioral responses to thermal challenges. Dev Psychobiol 2017; 60:5-14. [PMID: 29152730 DOI: 10.1002/dev.21588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
Body temperature regulation involves the development of responses to cold and warm challenges. Matching our understanding of the development of body temperature regulation to warm challenges with that of cold challenges will enhance our understanding of the ontogeny of thermoregulation and reveal different adaptive specializations. Warm and cold thermoregulation are important processes, and they include direct thermal effects on offspring, as well as indirect effects on them, such as those imposed by thermally associated alterations of maternal behavior. The present paper is a selective review of the existing literature and a report of some new empirical data, aimed at processes of mammalian development, especially those affecting behavior. We briefly discuss the development of body temperature regulation in rats and mice, and thermal aspects of maternal behavior with emphasis on responses to high temperatures. The new data extend previous analyses of individual and group responses in developing rodents to warm and cool ambient temperatures. This literature not only reveals a variety of adaptive specializations during development, but it points to the earlier appearance in young mammals of abilities to combat heat loss, relative to protections from hyperthermia. These relative developmental delays in compensatory defenses to heating appear to render young mammals especially vulnerable to environmental warming. We describe cascading consequences of warming-effects that illustrate interactions across levels of physiological, neural, and behavioral development.
Collapse
Affiliation(s)
- Delia S Shelton
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Oregon State University, Corvallis, Oregon.,University of Windsor, Windsor, Ontario
| | | |
Collapse
|
8
|
Blumberg MS, Lewis SJ, Sokoloff G. Incubation temperature modulates post-hatching thermoregulatory behavior in the Madagascar ground gecko, Paroedura pictus. J Exp Biol 2002; 205:2777-84. [PMID: 12177143 DOI: 10.1242/jeb.205.18.2777] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
All vertebrates regulate body temperature within narrow limits, regardless of their physiological capabilities. When do these limits develop, and can they be modified by manipulations of the developmental thermal environment? We addressed these questions by incubating the eggs of the Madagascar ground gecko, Paroedura pictus, at three temperatures and by assessing thermoregulatory behavior in hatchlings. Thermoregulatory behavior was assessed using a two-choice shuttle paradigm, and skin temperatures were measured non-invasively using infrared thermography. The shuttling behavior of hatchlings was systematically affected by the temperature at which they were incubated, and follow-up tests suggested that this effect persisted for at least three weeks post-hatching. The body temperature data from the shuttling experiment were used to model thermoregulatory behavior in a complex thermal environment; the model predicted systematic effects of incubation temperature on thermal preference. The specificity of the alteration in thermoregulatory behavior by incubation temperature is compelling and provides evidence for powerful pre-hatching influences on a fundamental, life-sustaining behavioral process.
Collapse
Affiliation(s)
- Mark S Blumberg
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City 52242, USA.
| | | | | |
Collapse
|