1
|
Yim-im W, Anderson TK, Paploski IAD, VanderWaal K, Gauger P, Krueger K, Shi M, Main R, Zhang J. Refining PRRSV-2 genetic classification based on global ORF5 sequences and investigation of their geographic distributions and temporal changes. Microbiol Spectr 2023; 11:e0291623. [PMID: 37933982 PMCID: PMC10848785 DOI: 10.1128/spectrum.02916-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE In this study, comprehensive analysis of 82,237 global porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) open reading frame 5 sequences spanning from 1989 to 2021 refined PRRSV-2 genetic classification system, which defines 11 lineages and 21 sublineages and provides flexibility for growth if additional lineages, sublineages, or more granular classifications are needed in the future. Geographic distribution and temporal changes of PRRSV-2 were investigated in detail. This is a thorough study describing the molecular epidemiology of global PRRSV-2. In addition, the reference sequences based on the refined genetic classification system are made available to the public for future epidemiological and diagnostic applications worldwide. The data from this study will facilitate global standardization and application of PRRSV-2 genetic classification.
Collapse
Affiliation(s)
- Wannarat Yim-im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Mang Shi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Yim-Im W, Huang H, Zheng Y, Li G, Rawal G, Gauger P, Krueger K, Main R, Zhang J. Characterization of PRRSV in clinical samples and the corresponding cell culture isolates. Transbound Emerg Dis 2022; 69:e3045-e3059. [PMID: 35838985 DOI: 10.1111/tbed.14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
Isolation of porcine reproductive and respiratory syndrome virus (PRRSV) in cell culture is a primary means of obtaining virus isolates for autogenous vaccine production and other applications. However, it has not been well characterized whether cell culture isolate and the virus in clinical sample are equivalent. This study compared PRRSV ORF5 sequences from 1,024 clinical samples (995 PRRSV-2, 26 PRRSV-1, and 3 PRRSV-1 and PRRSV-2 PCR-positive) and their isolates in MARC-145 and/or ZMAC cells. For 3 PRRSV-1 and PRRSV-2 PCR-positive clinical samples, both PRRSV-1 and PRRSV-2 were isolated in ZMAC cells whereas either PRRSV-1 or PRRSV-2, but not both, was isolated in MARC-145 cells, with isolate sequences matching the respective viruses in clinical samples. Twenty-six PRRSV-1 and most of 995 PRRSV-2 PCR-positive clinical samples had matching viral ORF5 sequences with their cell culture isolates. However, 14 out of 995 PRRSV-2 cases (1.4%) had non-matching viral sequences between clinical samples and MARC-145 isolates although viral sequences from clinical samples and ZMAC isolates matched. This is concerning because, if the MARC-145 isolate is directly used for autogenous vaccine production without sequencing confirmation against the virus in the clinical sample, it is possible that the produced autogenous vaccine does not include the desired wild-type virus strain found on the farm and instead contains vaccine-like virus. Vaccine-specific PCR and next-generation sequencing performed on six selected cases indicated presence of ≥2 PRRSV-2 strains (mixed infection) in such clinical samples. In summary, PRRSV ORF5 sequences from clinical samples and cell culture isolates matched each other for majority of the cases. However, PRRSV sequences between clinical sample and MARC-145 cell culture isolate could occasionally be different when the clinical sample contains ≥2 PRRSV-2 strains. Characterizing PRRSV sequences from clinical samples and cell culture isolates should be conducted before using isolates for producing autogenous vaccines or other applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wannarat Yim-Im
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Haiyan Huang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Ying Zheng
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Ganwu Li
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Gaurav Rawal
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Phillip Gauger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Karen Krueger
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Rodger Main
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jianqiang Zhang
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA
| |
Collapse
|
3
|
Rawal G, Yim-Im W, Chamba F, Smith C, Okones J, Francisco C, Zhang J. Development and validation of a reverse transcription real-time PCR assay for specific detection of PRRSGard vaccine-like virus. Transbound Emerg Dis 2021; 69:1212-1226. [PMID: 33763963 DOI: 10.1111/tbed.14084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 01/30/2023]
Abstract
Increasing use of modified live virus (MLV) vaccines presents challenges to interpret positive results of porcine reproductive and respiratory syndrome virus (PRRSV) screening PCR that can detect both wild-type and vaccine strains. Instead, vaccine-specific PCR provides a convenient tool to detect vaccine-like virus from a sample. Here we report the development and validation of a real-time RT-PCR specific for PRRSGard® , a newly available commercial PRRSV-2 MLV vaccine. Analytical specificity, sensitivity and diagnostic performance of PRRSGard PCR were evaluated and compared to a commercial PRRSV screening PCR (reference PCR). PRRSGard and reference PCRs did not cross-react with any of the 27 non-PRRSV swine pathogens. PRRSGard PCR did not cross-react with other PRRSV-2 vaccine viruses and 31 laboratory and field PRRSV-2 isolates representing various genetic lineages of PRRSV-2. PRRSGard and reference PCRs consistently detected up to 10-6 and 10-5 dilutions of PRRSGard vaccine virus, respectively. Based on testing serial dilutions of in vitro transcribed RNA, the 95% limit of detection of PRRSGard PCR was 16 genomic copies/reaction with CT cut-off value of 36 and 7 genomic copies/reaction with CT cut-off value of 37. Diagnostic performance of PRRSGard PCR was evaluated using 846 clinical samples (684 serum and 162 oral fluid samples). Compared to the reference screening PCR, diagnostic sensitivity, specificity and agreement of PRRSGard PCR were 95.34%, 98.85% and 97.52% with cut-off CT value of 36 and 98.14%, 96.56% and 97.16% with cut-off CT value of 37. In addition, PRRSGard PCR was able to detect PRRSGard vaccine virus in a sample even with the co-presence of another PRRSV strain. In summary, in contrast to a reference screening PCR that detects both vaccine and field PRRSV strains, PRRSGard PCR provides a convenient tool to specifically detect PRRSGard vaccine-like virus and to inform PRRSV vaccination protocols.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Wannarat Yim-Im
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | - Chad Smith
- Pharmgate Animal Health, Wilmington, NC, USA
| | - Jeff Okones
- Pharmgate Animal Health, Wilmington, NC, USA
| | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
4
|
Comparison of ZMAC and MARC-145 Cell Lines for Improving Porcine Reproductive and Respiratory Syndrome Virus Isolation from Clinical Samples. J Clin Microbiol 2021; 59:JCM.01757-20. [PMID: 33268540 DOI: 10.1128/jcm.01757-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/28/2020] [Indexed: 11/20/2022] Open
Abstract
The MARC-145 cell line is commonly used to isolate porcine reproductive and respiratory syndrome virus (PRRSV) for diagnostics, research, and vaccine production, but it yields frustratingly low success rates of virus isolation (VI). The ZMAC cell line, derived from porcine alveolar macrophages, has become available, but its utilization for PRRSV VI from clinical samples has not been evaluated. This study compared PRRSV VI results in ZMAC and MARC-145 cells from 375 clinical samples (including 104 lung, 140 serum, 90 oral fluid, and 41 processing fluid samples). The PRRSV VI success rate was very low in oral fluids and processing fluids regardless of whether ZMAC cells or MARC-145 cells were used. Success rates of PRRSV VI from lung and serum samples were significantly higher in ZMAC than in MARC-145 cells. Lung and serum samples with threshold cycle (CT ) values of <30 had better VI success. PRRSV-2 in genetic lineages 1 and 8 was isolated more successfully in ZMAC cells than in MARC-145 cells, whereas PRRSV-2 in genetic lineage 5 was isolated in the two cell lines with similar success rates. For samples with positive VI in both ZMAC and MARC-145 cells, 14 of 23 PRRSV-2 isolates had similar titers in the two cell lines. A total of 51 of 95 (53.7%) ZMAC-obtained PRRSV-2 or PRRSV-1 isolates grew in MARC-145 cells, and all 46 (100%) MARC-145-obtained isolates grew in ZMAC cells. In summary, ZMAC cells allow better isolation of a wide range of PRRSV field strains; however, not all of the ZMAC-obtained PRRSV isolates grow in MARC-145 cells. This report provides important guidelines to improve isolation of PRRSV from clinical samples for further characterization and/or for producing autogenous vaccines.
Collapse
|
5
|
Epidemiological study of air filtration systems for preventing PRRSV infection in large sow herds. Prev Vet Med 2013; 112:109-17. [PMID: 23870693 DOI: 10.1016/j.prevetmed.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 04/29/2013] [Accepted: 06/02/2013] [Indexed: 01/21/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the most economically significant pathogen in the US swine industry. Aerosol transmission among herds is a major concern in pig dense regions and filtration of incoming air, in combination with standard biosecurity procedures, has been demonstrated to prevent transmission of PRRSV into susceptible herds. To quantify the impact of air filtration on reducing risk of PRRSV outbreaks, we compared the incidence rate of new PRRSV introductions in 20 filtered and 17 non-filtered control sow herds in a swine dense region of North America during a 7 year study period. Events of novel virus introduction were ascertained by phylogenetic analysis of PRRSV ORF5 gene sequences. Putative new viruses were defined as exogenous (introduced) based on ORF5 nucleotide sequence differences compared to previous farm isolates. The influence of sequence difference cut-off values ranging from 2 to 10% on case definition and relative risk were evaluated. Non-filtered farms incurred about 0.5 outbreaks per year, with a seasonal increase in risk in cooler periods. Baseline risk, prior to filtration, in treatment farms was approximately 0.75 per year, approximately 50% higher than in control farms. Air filtration significantly reduced risk of PRRSV introduction events to 0.06-0.22 outbreaks per year, depending on the cut-off values used to classify a virus isolate as new to the herd. Overall, air filtration led to an approximately 80% reduction in risk of introduction of novel PRRSV, indicating that on large sow farms with good biosecurity in swine-dense regions, approximately four-fifths of PRRSV outbreaks may be attributable to aerosol transmission.
Collapse
|
6
|
Molecular epidemiology of PRRSV: a phylogenetic perspective. Virus Res 2010; 154:7-17. [PMID: 20837072 DOI: 10.1016/j.virusres.2010.08.014] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022]
Abstract
Since its first discovery two decades ago, porcine reproductive and respiratory syndrome virus (PRRSV) has been the subject of intensive research due to its huge impact on the worldwide swine industry. Thanks to the phylogenetic analyses, much has been learned concerning the genetic diversity and evolution history of the virus. In this review, we focused on the evolutionary and epidemiological aspects of PRRSV from a phylogenetic perspective. We first described the diversity and transmission dynamics of Type 1 and 2 PRRSV, respectively. Then, we focused on the more ancient evolutionary history of PRRSV: the time of onset of all existing PRRSV and an origin hypothesis were discussed. Finally, we summarized the results from previous recombination studies to assess the potential impact of recombination on the virus epidemiology.
Collapse
|
7
|
Kim WI, Yoon KJ. Molecular assessment of the role of envelope-associated structural proteins in cross neutralization among different PRRS viruses. Virus Genes 2008; 37:380-91. [PMID: 18770017 DOI: 10.1007/s11262-008-0278-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 08/14/2008] [Indexed: 11/30/2022]
Abstract
To assess the role of each envelope-associated protein (i.e., ORFs 2-6 products) of type 2 PRRSV in cross neutralization mediated by antibody, chimeric mutants were generated by replacing ORFs of a VR2332-based infectious clone with those of JA142, SDSU73, PRRS124, or 2M11715 that are genetically and antigenically distinct from VR2332 and two-way neutralization assays were performed on those mutants using VR2332, JA142, SDSU73, or PRRS124 antisera. All ORF 5-replaced mutants showed increased susceptibility or resistance against homologous or heterologous antisera, respectively, in comparison to that of the donor strains, but failed to achieve a complete reversion of cross neutralization. In contrast, substitution of ORFs 3-6 completely reversed the susceptibility of the virus to neutralization by antibody. Changes in ORFs 3, 5, and 6 were additively responsible for reversion of the susceptibility, suggesting that the genetic similarity of these ORFs should be considered for better cross neutralization between two different type 2 PRRS viruses.
Collapse
Affiliation(s)
- Won-Il Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 1600 South 16th Street, Ames, IA 50011, USA
| | | |
Collapse
|
8
|
Cha SH, Chang CC, Yoon KJ. Instability of the restriction fragment length polymorphism pattern of open reading frame 5 of porcine reproductive and respiratory syndrome virus during sequential pig-to-pig passages. J Clin Microbiol 2004; 42:4462-7. [PMID: 15472294 PMCID: PMC522335 DOI: 10.1128/jcm.42.10.4462-4467.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction fragment length polymorphism (RFLP) analysis is one of the tools commonly used to study the molecular epidemiology of porcine reproductive and respiratory syndrome viruses (PRRSVs). As PRRSVs are genetically variable, the stability of the RFLP pattern of a PRRSV during in vivo replication was evaluated by carrying out 13 sequential pig-to-pig passages (P1 to P13) of PRRSV ATCC VR-2332 in three independent pig lines for a total of 727 days. During P1 the pigs were inoculated with a homogeneous inoculum (CC-01) prepared through a series of plaque purifications, and during P2 to P13 the pigs were inoculated with a tissue filtrate from the corresponding pig in the previous passage. Fifteen viral plaque clones were directly isolated from CC-01 and the day 7 serum of each pig of each passage, open reading frame 5 of the clones was sequenced, and the clones were compared to CC-01 to assess the mutation rates and RFLP patterns (obtained by digestion with MluI, HincII, and SacII) over time. Among the 495 viral clones recovered during the passages, 398 clones, including CC-01, had pattern 2-5-2 (MluI-HincII-SacII); however, the remaining 97 viral clones showed different patterns (2-6-2 [P2], 1-5-2 [P3], 2-5-4 [P7], and 2-1-2 [P10]). Importantly, the MluI site that was reported to be present in only one of the PRRS modified live virus vaccine strains (Ingelvac) and its parental strain (ATCC VR-2332) can disappear during in vivo replication. Furthermore, sequence homology between CC-01 and clones with pattern 2-5-2 or clones with other patterns differed by 0.05 to 1.58% and 0.5 to 1.45%, respectively, suggesting that RFLP analysis cannot accurately predict genetic relatedness between PRRSVs. Collectively, precaution should be taken when the molecular epidemiology of PRRSVs is evaluated by RFLP analysis.
Collapse
Affiliation(s)
- Sang-Ho Cha
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
9
|
Larochelle R, D'Allaire S, Magar R. Molecular epidemiology of porcine reproductive and respiratory syndrome virus (PRRSV) in Québec. Virus Res 2003; 96:3-14. [PMID: 12951261 DOI: 10.1016/s0168-1702(03)00168-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) strains identified in samples from 226 field cases originating from Québec herds and submitted over a 4-year period (March 1998-July 2002) were studied. Sequencing of PRRSV strains was performed on the ORF5 gene amplified product and restriction fragment length polymorphism (RFLP) patterns for enzymes MluI, HincII and SacII were determined on these sequences. Twenty-four other PRRSV isolates including three vaccine strains were also included for comparison purposes and the total of 250 PRRSV strains were used in a phylogenetic analysis. Clinical and epidemiological data were collected through a questionnaire for each of the submitted field cases. About 75% of the cases were submitted during autumn and winter. Over 60% of the cases were submitted for reproductive problems, 33% for respiratory problems and 6% for increased PRRSV serological titers in the herd in absence of clinical signs. In 69% of the cases there was a PRRS vaccination program for the herd. However, only 26% of the animals from which samples were obtained had been vaccinated themselves. The genomic analysis of this large number of strains revealed a great variability of PRRSV ORF5 with 59% of amino acid positions being polymorphic. A total of 29 RFLP patterns were obtained. The main RFLP patterns obtained were 1-8-4 (28%), 1-4-4 (16%), 1-2-4 (9%) and 1-11-4 (9%). The global findings derived from the molecular analysis of 226 PRRSV strains suggest that PRRSV circulating in Québec represent a different sub-population of strains. Vaccine-like strains were identified in 10% of the cases. A phylogenetic tree enabled the identification of 44 groupings comprising two to 23 strains each. Of the 250 sequences analyzed, 183 (73%) could be included in one of these groupings. The data collected from the questionnaires were used to establish epidemiological links between strains within groupings. The main relationships between strains within a grouping were the introduction of infected animals (19%) and area spread (33%). In 40% of the cases from which an area spread was suspected, herds were located within 3 km from another. Aerosol transmission was suspected in several cases, more than half of which belonged to different owners. In 41 herds, more than one strain (2-8) were identified over a period varying from 3 months to 4 years. Data indicated that a PRRSV strain can persist in a herd up to 3.5 years displaying as little as 2% variation in ORF5 during this time. In 78% of the herds with multiple submissions genetically different strains were identified; often within 1 year of the original identification. These genetically distinct strains were often associated with a recrudescence of moderate to severe clinical signs. Coexistence on the same farm of different PRRSV strains was also observed.
Collapse
Affiliation(s)
- Renée Larochelle
- Laboratoire d'hygiène vétérinaire et alimentaire, Agence canadienne d'inspection des aliments, 3400 Casavant ouest, St-Hyacinthe, Québec, Canada J2S 8E3.
| | | | | |
Collapse
|
10
|
Key KF, Guenette DK, Yoon KJ, Halbur PG, Toth TE, Meng XJ. Development of a heteroduplex mobility assay to identify field isolates of porcine reproductive and respiratory syndrome virus with nucleotide sequences closely related to those of modified live-attenuated vaccines. J Clin Microbiol 2003; 41:2433-9. [PMID: 12791860 PMCID: PMC156521 DOI: 10.1128/jcm.41.6.2433-2439.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 02/07/2003] [Accepted: 02/26/2003] [Indexed: 11/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome has been devastating the swine industry since the late 1980s. The disease has been controlled, to some extent, through the use of modified live-attenuated (MLV) vaccines once available. However, such a practice periodically resulted in isolation or detection of vaccine-like viruses from pigs as determined by a partial genomic sequencing. In this study, we developed a heteroduplex mobility assay (HMA) for quickly identifying porcine reproductive and respiratory syndrome virus (PRRSV) isolates with significant nucleotide sequence identities (>/=98%) with the modified live-attenuated vaccines. The major envelope gene (ORF5) of 51 PRRSV field isolates recovered before and after the introduction of the vaccines was amplified, denatured, and reannealed with the HMA reference vaccine strains Ingelvac PRRS MLV and Ingelvac PRRS ATP, respectively. Nine of the 51 field isolates and the VR2332 parent virus of Ingelvac PRRS MLV, which were all highly related to Ingelvac PRRS MLV with =2% nucleotide sequence divergence as determined by sequence analysis, were all identified by the HMA to form homoduplexes with the reference Ingelvac PRRS MLV. No homoduplex-forming field isolate was identified when Ingelvac PRRS ATP was used as the HMA reference except for its parent virus JA142. Other field isolates with more than 2% nucleotide sequence divergence with the respective reference vaccine strain resulted in the formation of heteroduplexes with reduced mobility in polyacrylamide gel electrophoresis. The HMA results also correlated well with the results of phylogenetic analyses. The data indicated that the HMA developed in the study may be a rapid and efficient method for large-scale screening of potential vaccine-like PRRSV field isolates for further genetic characterization.
Collapse
Affiliation(s)
- K F Key
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0342, USA
| | | | | | | | | | | |
Collapse
|