1
|
Bian Y, Shan G, Bi G, Liang J, Hu Z, Sui Q, Shi H, Zheng Z, Yao G, Wang Q, Fan H, Zhan C. Targeting ALDH1A1 to enhance the efficacy of KRAS-targeted therapy through ferroptosis. Redox Biol 2024; 77:103361. [PMID: 39317105 PMCID: PMC11465744 DOI: 10.1016/j.redox.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
KRAS is among the most commonly mutated oncogenes in human malignancies. Although the advent of sotorasib and adagrasib, has lifted the "undruggable" stigma of KRAS, the resistance to KRAS inhibitors quickly becomes a major issue. Here, we reported that aldehyde dehydrogenase 1 family member A1 (ALDH1A1), an enzyme in retinoic acid biosynthesis and redox balance, increases in response to KRAS inhibitors and confers resistance in a range of cancer types. KRAS inhibitors' efficacy is significantly improved in sensitive or drug-resistant cells, patient-derived organoids (PDO), and xenograft models by ALDH1A1 knockout, loss of enzyme function, or inhibitor. Furthermore, we discovered that ALDH1A1 suppresses the efficacy of KRAS inhibitors by counteracting ferroptosis. ALDH1A1 detoxicates deleterious aldehydes, boosts the synthesis of NADH and retinoic acid (RA), and improves RARA function. ALDH1A1 also activates the CREB1/GPX4 pathway, stimulates the production of lipid droplets in a pH-dependent manner, and subsequently prevents ferroptosis induced by KRAS inhibitors. Meanwhile, we established that GTF2I is dephosphorylated at S784 via ERK by KRAS inhibitors, which hinders its nuclear translocation and mediates ALDH1A1's upregulation in response to KRAS inhibitors. In summary, the results offer valuable insights into targeting ALDH1A1 to enhance the effectiveness of KRAS-targeted therapy through ferroptosis in cancer treatment.
Collapse
Affiliation(s)
- Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Walker OL, Dahn ML, Power Coombs MR, Marcato P. The Prostaglandin E2 Pathway and Breast Cancer Stem Cells: Evidence of Increased Signaling and Potential Targeting. Front Oncol 2022; 11:791696. [PMID: 35127497 PMCID: PMC8807694 DOI: 10.3389/fonc.2021.791696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Culprits of cancer development, metastasis, and drug resistance, cancer stem cells (CSCs) are characterized by specific markers, active developmental signaling pathways, metabolic plasticity, increased motility, invasiveness, and epithelial-mesenchymal transition. In breast cancer, these cells are often more prominent in aggressive disease, are amplified in drug-resistant tumors, and contribute to recurrence. For breast cancer, two distinct CSC populations exist and are typically defined by CD44+/CD24- cell surface marker expression or increased aldehyde dehydrogenase (ALDH) activity. These CSC populations share many of the same properties but also exhibit signaling pathways that are more active in CD44+/CD24- or ALDH+ populations. Understanding these CSC populations and their shared or specific signaling pathways may lead to the development of novel therapeutic strategies that will improve breast cancer patient outcomes. Herein, we review the current evidence and assess published patient tumor datasets of sorted breast CSC populations for evidence of heightened prostaglandin E2 (PGE2) signaling and activity in these breast CSC populations. PGE2 is a biologically active lipid mediator and in cancer PGE2 promotes tumor progression and poor patient prognosis. Overall, the data suggests that PGE2 signaling is important in propagating breast CSCs by enhancing inherent tumor-initiating capacities. Development of anti-PGE2 signaling therapeutics may be beneficial in inhibiting tumor growth and limiting breast CSC populations.
Collapse
Affiliation(s)
| | | | - Melanie R. Power Coombs
- Pathology, Dalhousie University, Halifax, NS, Canada
- Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Pathology, Dalhousie University, Halifax, NS, Canada
- Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Paola Marcato,
| |
Collapse
|
3
|
Barker KT, Yogev O. Establishment of In Vivo Acquired Resistance to Chemotherapy Via Individual Dose Escalation Treatment Regime. Methods Mol Biol 2022; 2535:73-83. [PMID: 35867223 DOI: 10.1007/978-1-0716-2513-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The vast majority of cancer deaths are the result of drug resistance. The lack of superior preclinical models that better reflect the complexity of relapsed disease hinders the development of novel therapeutics. 2D and 3D in vitro cell-based assays have provided some information, but this is limited and does not consider the role of the tumor microenvironment. The development of an in vivo assay can allow to generate resistance, while taking into account the role of the tumor microenvironment and the tumor structure. To achieve this, we have developed an in vivo dose-escalation protocol that models the acquisition of resistance. This model of chemo-resistant neuroblastoma presented with metastases and a genetic signature characteristic of clinical relapsed tumors (Yogev et al. Cancer Res. 79:5382-5393, 2019). We believe that this protocol can be used to generate faithful models for other types of relapse disease; these could serve as reliable tools while developing novel therapies.
Collapse
Affiliation(s)
- Karen T Barker
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Orli Yogev
- CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
4
|
Dinneen K, Baird AM, Ryan C, Sheils O. The Role of Cancer Stem Cells in Drug Resistance in Gastroesophageal Junction Adenocarcinoma. Front Mol Biosci 2021; 8:600373. [PMID: 33628765 PMCID: PMC7897661 DOI: 10.3389/fmolb.2021.600373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Gastroesophageal junction adenocarcinomas (GEJA) have dramatically increased in incidence in the western world since the mid-20th century. Their prognosis is poor, and conventional anti-cancer therapies do not significantly improve survival outcomes. These tumours are comprised of a heterogenous population of both cancer stem cells (CSC) and non-CSCs, with the former playing a crucial role in tumorigenesis, metastasis and importantly drug resistance. Due to the ability of CSCs to self-replicate indefinitely, their resistance to anti-cancer therapies poses a significant barrier to effective treatment of GEJA. Ongoing drug development programmes aim to target and eradicate CSCs, however their characterisation and thus identification is difficult. CSC regulation is complex, involving an array of signalling pathways, which are in turn influenced by a number of entities including epithelial mesenchymal transition (EMT), microRNAs (miRNAs), the tumour microenvironment and epigenetic modifications. Identification of CSCs commonly relies on the expression of specific cell surface markers, yet these markers vary between different malignancies and indeed are often co-expressed in non-neoplastic tissues. Development of targeted drug therapies against CSCs thus requires an understanding of disease-specific CSC markers and regulatory mechanisms. This review details the current knowledge regarding CSCs in GEJA, with particular emphasis on their role in drug resistance.
Collapse
Affiliation(s)
- Kate Dinneen
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ciara Ryan
- Department of Histopathology, St. James's Hospital, Dublin, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Aldehyde Dehydrogenase 1B1 Is Associated with Altered Cell Morphology, Proliferation, Migration and Chemosensitivity in Human Colorectal Adenocarcinoma Cells. Biomedicines 2021; 9:biomedicines9010044. [PMID: 33419031 PMCID: PMC7825346 DOI: 10.3390/biomedicines9010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that catalyze the oxidation of endogenous and exogenous aldehydes to their corresponding carboxylic acids. ALDHs participate in a variety of cellular mechanisms, such as metabolism, cell proliferation and apoptosis, as well as differentiation and stemness. Over the last few years, ALDHs have emerged as cancer stem cell markers in a wide spectrum of solid tumors and hematological malignancies. In this study, the pathophysiological role of ALDH1B1 in human colorectal adenocarcinoma was investigated. Human colon cancer HT29 cells were stably transfected either with human green fluorescent protein (GFP)-tagged ALDH1B1 or with an empty lentiviral expression vector. The overexpression of ALDH1B1 was correlated with altered cell morphology, decreased proliferation rate and reduced clonogenic efficiency. Additionally, ALDH1B1 triggered a G2/M arrest at 24 h post-cell synchronization, probably through p53 and p21 upregulation. Furthermore, ALDH1B1-overexpressing HT29 cells exhibited enhanced resistance against doxorubicin, fluorouracil (5-FU) and etoposide. Finally, ALDH1B1 induced increased migratory potential and displayed epithelial–mesenchymal transition (EMT) through the upregulation of ZEB1 and vimentin and the consequent downregulation of E-cadherin. Taken together, ALDH1B1 confers alterations in the cell morphology, cell cycle progression and gene expression, accompanied by significant changes in the chemosensitivity and migratory potential of HT29 cells, underlying its potential significance in cancer progression.
Collapse
|
6
|
Yogev O, Almeida GS, Barker KT, George SL, Kwok C, Campbell J, Zarowiecki M, Kleftogiannis D, Smith LM, Hallsworth A, Berry P, Möcklinghoff T, Webber HT, Danielson LS, Buttery B, Calton EA, da Costa BM, Poon E, Jamin Y, Lise S, Veal GJ, Sebire N, Robinson SP, Anderson J, Chesler L. In Vivo Modeling of Chemoresistant Neuroblastoma Provides New Insights into Chemorefractory Disease and Metastasis. Cancer Res 2019; 79:5382-5393. [PMID: 31405846 DOI: 10.1158/0008-5472.can-18-2759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer that is frequently metastatic and resistant to conventional treatment. In part, a lack of natively metastatic, chemoresistant in vivo models has limited our insight into the development of aggressive disease. The Th-MYCN genetically engineered mouse model develops rapidly progressive chemosensitive neuroblastoma and lacks clinically relevant metastases. To study tumor progression in a context more reflective of clinical therapy, we delivered multicycle treatment with cyclophosphamide to Th-MYCN mice, individualizing therapy using MRI, to generate the Th-MYCN CPM32 model. These mice developed chemoresistance and spontaneous bone marrow metastases. Tumors exhibited an altered immune microenvironment with increased stroma and tumor-associated fibroblasts. Analysis of copy number aberrations revealed genomic changes characteristic of human MYCN-amplified neuroblastoma, specifically copy number gains at mouse chromosome 11, syntenic with gains on human chromosome 17q. RNA sequencing revealed enriched expression of genes associated with 17q gain and upregulation of genes associated with high-risk neuroblastoma, such as the cell-cycle regulator cyclin B1-interacting protein 1 (Ccnb1ip1) and thymidine kinase (TK1). The antiapoptotic, prometastatic JAK-STAT3 pathway was activated in chemoresistant tumors, and treatment with the JAK1/JAK2 inhibitor CYT387 reduced progression of chemoresistant tumors and increased survival. Our results highlight that under treatment conditions that mimic chemotherapy in human patients, Th-MYCN mice develop genomic, microenvironmental, and clinical features reminiscent of human chemorefractory disease. The Th-MYCN CPM32 model therefore is a useful tool to dissect in detail mechanisms that drive metastasis and chemoresistance, and highlights dysregulation of signaling pathways such as JAK-STAT3 that could be targeted to improve treatment of aggressive disease. SIGNIFICANCE: An in vivo mouse model of high-risk treatment-resistant neuroblastoma exhibits changes in the tumor microenvironment, widespread metastases, and sensitivity to JAK1/2 inhibition.
Collapse
Affiliation(s)
- Orli Yogev
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Gilberto S Almeida
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Karen T Barker
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Colin Kwok
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | - Magdalena Zarowiecki
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- CRUK-center Informatics Facility, The Institute of Cancer Research, London, United Kingdom
| | | | - Laura M Smith
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Philip Berry
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Till Möcklinghoff
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah T Webber
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Laura S Danielson
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Bliss Buttery
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth A Calton
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Barbara M da Costa
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Gareth J Veal
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Neil Sebire
- Paediatric and Development Pathology, Institute of Child Health, University College London, London, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - John Anderson
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
7
|
Rodríguez-Zavala JS, Calleja LF, Moreno-Sánchez R, Yoval-Sánchez B. Role of Aldehyde Dehydrogenases in Physiopathological Processes. Chem Res Toxicol 2019; 32:405-420. [PMID: 30628442 DOI: 10.1021/acs.chemrestox.8b00256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many different diseases are associated with oxidative stress. One of the main consequences of oxidative stress at the cellular level is lipid peroxidation, from which toxic aldehydes may be generated. Below their toxicity thresholds, some aldehydes are involved in signaling processes, while others are intermediaries in the metabolism of lipids, amino acids, neurotransmitters, and carbohydrates. Some aldehydes ubiquitously distributed in the environment, such as acrolein or formaldehyde, are extremely toxic to the cell. On the other hand, aldehyde dehydrogenases (ALDHs) are able to detoxify a wide variety of aldehydes to their corresponding carboxylic acids, thus helping to protect from oxidative stress. ALDHs are located in different subcellular compartments such as cytosol, mitochondria, nucleus, and endoplasmic reticulum. The aim of this review is to analyze, and highlight, the role of different ALDH isoforms in the detoxification of aldehydes generated in processes that involve high levels of oxidative stress. The ALDH physiological relevance becomes evident by the observation that their expression and activity are enhanced in different pathologies that involve oxidative stress such as neurodegenerative disorders, cardiopathies, atherosclerosis, and cancer as well as inflammatory processes. Furthermore, ALDH mutations bring about several disorders in the cell. Thus, understanding the mechanisms by which these enzymes participate in diverse cellular processes may lead to better contend with the damage caused by toxic aldehydes in different pathologies by designing modulators and/or protocols to modify their activity or expression.
Collapse
Affiliation(s)
| | | | - Rafael Moreno-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| | - Belem Yoval-Sánchez
- Departamento de Bioquímica , Instituto Nacional de Cardiología , México 14080 , México
| |
Collapse
|
8
|
Groß A, Schulz C, Kolb J, Koster J, Wehner S, Czaplinski S, Khilan A, Rohrer H, Harter PN, Klingebiel T, Langer JD, Geerts D, Schulte D. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma. Cancer Res 2018; 78:1935-1947. [DOI: 10.1158/0008-5472.can-17-1860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
|
9
|
Stem Cell Marker Aldehyde Dehydrogenase 1 (ALDH1)-Expressing Cells are Enriched in Triple-Negative Breast Cancer. Int J Biol Markers 2018; 28:e357-64. [PMID: 24338721 DOI: 10.5301/jbm.5000048] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 01/16/2023]
Abstract
The stem cell marker ALDH1 has been of particular interest to scientists since it has been successfully used as a marker to isolate cancer stem cells from breast cancers. However, little is known, especially in Chinese breast cancer patients, on whether ALDH1 enrichment is prevalent in certain subtypes of breast cancer. In this study, we performed flow cytometry and immunohistochemistry to measure the expression of ALDH1 in 10 breast cancer cell lines and in a set of tissue microarrays consisting of 101 breast cancer tissues from the Chinese population. The 101 breast cancer tissues included 4 cancer subtypes defined on bases of their ER, PR, and HER2 statuses: triple-negative (25 cases), luminal A (33 cases), luminal B (16 cases) and HER2-overexpressing (HER2-OE, 27 cases). We found that ALDH1 was expressed in 25 of the 101 cases of breast cancer tissues. When the analysis was stratified, we found that the expression of ALDH1 varied significantly among the 4 subtypes, with a higher expression in triple-negative breast cancer (TNBC, p=0.003) than in the other 3 subtypes. In a series of breast cancer cell lines, we also confirmed that ALDH1 activity was mainly found in TNBC cell lines compared with non-TNBC ones (15.6%±2.45% vs 5.5%±2.58%, p=0.026). These data support the concept that the expression of ALDH1 is higher in TNBC than non-TNBC, which may be clinically meaningful for a better understanding of the poor prognosis of TNBC patients.
Collapse
|
10
|
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2017; 7:11018-32. [PMID: 26783961 PMCID: PMC4905455 DOI: 10.18632/oncotarget.6920] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Division of Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
11
|
Bogen A, Buske C, Hiddemann W, Bohlander SK, Christ O. Variable aldehyde dehydrogenase activity and effects on chemosensitivity of primitive human leukemic cells. Exp Hematol 2016; 47:54-63. [PMID: 27826122 DOI: 10.1016/j.exphem.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
Abstract
Aldehyde dehydrogenase (ALDH) activity is an established feature of primitive normal human hematopoietic cells, in which it has been associated with a high expression of the 1A1 isoform of ALDH. High ALDH 1A1 activity has been reported to also characterize cells that propagate malignant populations arising in other tissues, but the regulation and basis of ALDH activity in primary human leukemic cells has not been well studied. We obtained samples from patients with newly diagnosed acute myeloid leukemia (AML; n = 21) and chronic myeloid leukemia (CML; n = 8) and analyzed different phenotypically and functionally defined subsets for their ALDH activity using the ALDEFLUOR® kit and expression of the ALDH1A1 gene. We detected cells with high ALDH activity (ALDHpos) in all samples from AML and CML patients. These were consistently enriched in the CD34+ population of these samples, but typically not in the CD34+CD38- subset. Leukemic cells with direct clonogenic activity in vitro or those able to repopulate the bone marrow of sublethally irradiated non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice were both ALDHpos and ALDHneg. Interestingly, ALDH1A1 transcripts were highest in the ALDHneg leukemic cells and, in studies with leukemic cell lines, exposure to an inhibitor of ALDH activity variably affected sensitivity to daunorubicin. Cells with high ALDH activity are commonly found within the CD34+ population of primary human leukemic cells but, unlike in normal hematopoietic tissues, do not selectively or consistently comprise those with proliferative potential or other distinct functional properties.
Collapse
Affiliation(s)
- Anja Bogen
- Department of Medicine III, University of Munich, Munich, Germany
| | - Christian Buske
- CCC Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| | | | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Oliver Christ
- Department of Medicine III, University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. DISEASE MARKERS 2013; 35:163-72. [PMID: 24167362 PMCID: PMC3774968 DOI: 10.1155/2013/187043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/28/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gallbladder cancers (GBCs) are highly aggressive cancers with high mortality. However, biological markers for the progression and prognosis of GBC are currently unavailable in the clinic. OBJECTIVE To identify biomarkers for predicting GBC metastasis and prognosis. METHODS We examined ALDH1A3 and GPX3 expressions in 46 squamous cell/adenosquamous carcinomas (SC/ASC) and 80 adenocarcinomas (AC) by using immunohistochemistry. RESULTS Positive ALDH1A3 and negative GPX3 expressions were significantly associated with lymph node metastasis and invasion of SC/ASCs and ACs. Univariate Kaplan-Meier analysis showed that either positive ALDH1A3 (P < 0.001) or negative GPX3 (P < 0.001) expression significantly correlated with decreased overall survival in both SC/ASC and AC patients. Multivariate Cox regression analysis showed that positive ALDH1A3 expression or negative GPX3 expression was an independent poor-prognostic predictor in both SC/ASC and AC patients. CONCLUSIONS Our study suggested that positive ALDH1A3 and negative GPX3 expressions are closely associated with clinical pathological behaviors and poor prognosis of gallbladder cancer.
Collapse
|
13
|
Duong HQ, Hwang JS, Kim HJ, Kang HJ, Seong YS, Bae I. Aldehyde dehydrogenase 1A1 confers intrinsic and acquired resistance to gemcitabine in human pancreatic adenocarcinoma MIA PaCa-2 cells. Int J Oncol 2012; 41:855-61. [PMID: 22710732 PMCID: PMC3508685 DOI: 10.3892/ijo.2012.1516] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022] Open
Abstract
Gemcitabine (GEM) is the front-line standard chemotherapy used for the treatment of pancreatic cancer; however, chemoresistance to GEM remains the major obstacle to the successful control of this disease. Both the expression levels and activity of aldehyde dehydrogenase 1A1 (ALDH1A1) are important features of tumor-initiating and/or cancer stem cell properties in multiple types of human cancer. As one of the intrinsic properties of cancer stem cells is drug resistance, in this study, we examined the correlation between the level and activity of endogenous ALDH1A1 and GEM resistance in the MIA PaCa-2 cell line that contains high expression levels and activity of ALDH1A1. We used small interfering RNAs (siRNAs) to deplete ALDH1A1 and investigate its potential role in conferring GEM resistance. The ALDH1A1 knockdown markedly reduced ALDH1A1 expression and activity and inhibited cell proliferation. Moreover, the combination of ALDH1A1-siRNA and GEM significantly decreased cell viability, increased apoptotic cell death and increased the accumulation of cells at the S-phase compared to the controls. Our data also demonstrated that ALDH1A1 expression and activity were significantly higher in the GEM-resistant MIA PaCa-2 cell line (MIA PaCa-2/GR), compared to the parental MIA PaCa-2 cell line (MIA PaCa-2/P). In the MIA PaCa-2/GR cells, the combination of ALDH1A1-siRNA and GEM also showed a significant decrease in cell viability and an increase in apoptotic cell death, emphasizing the importance of ALDH1A1 in both intrinsic and acquired GEM resistance. This potentially powerful combination treatment of ALDH1A1-siRNA and GEM warrants further investigation as an effective therapeutic regimen to overcome the resistance of pancreatic cancer to GEM.
Collapse
Affiliation(s)
- Hong-Quan Duong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
14
|
Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med 2012; 52:735-46. [PMID: 22206977 DOI: 10.1016/j.freeradbiomed.2011.11.033] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor γ (PPARγ) with polyunsaturated fatty acids or PPARγ transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPARγ with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation.
Collapse
Affiliation(s)
- G Muzio
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
15
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:152-67. [PMID: 21621639 PMCID: PMC3179567 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
16
|
Atari MI, Chappell MJ, Errington RJ, Smith PJ, Evans ND. Kinetic modelling of the role of the aldehyde dehydrogenase enzyme and the breast cancer resistance protein in drug resistance and transport. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:93-103. [PMID: 20621382 DOI: 10.1016/j.cmpb.2010.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 05/26/2010] [Accepted: 06/13/2010] [Indexed: 05/29/2023]
Abstract
A compartmental model for the in vitro uptake kinetics of the anti-cancer agent topotecan (TPT) has been extended from a previously published model. The extended model describes the drug activity and delivery of the pharmacologically active form to the DNA target as well as the catalysis of the aldehyde dehydrogenase (ALDH) enzyme and the elimination of drug from the cytoplasm via the efflux pump. Verification of the proposed model is achieved using scanning-laser microscopy data from live human breast cancer cells. Before estimating the unknown model parameters from the experimental in vitro data it is essential to determine parameter uniqueness (or otherwise) from this imposed output structure. This is formally performed as a structural identifiability analysis, which demonstrates that all of the unknown model parameters are uniquely determined by the output structure corresponding to the experiment.
Collapse
Affiliation(s)
- M I Atari
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
17
|
Landen CN, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, Bast RC, Coleman RL, Lopez-Berestein G, Sood AK. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 2010; 9:3186-99. [PMID: 20889728 PMCID: PMC3005138 DOI: 10.1158/1535-7163.mct-10-0563] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1) expression characterizes a subpopulation of cells with tumor-initiating or cancer stem cell properties in several malignancies. Our goal was to characterize the phenotype of ALDH1A1-positive ovarian cancer cells and examine the biological effects of ALDH1A1 gene silencing. In our analysis of multiple ovarian cancer cell lines, we found that ALDH1A1 expression and activity was significantly higher in taxane- and platinum-resistant cell lines. In patient samples, 72.9% of ovarian cancers had ALDH1A1 expression in which the percentage of ALDH1A1-positive cells correlated negatively with progression-free survival (6.05 vs. 13.81 months; P < 0.035). Subpopulations of A2780cp20 cells with ALDH1A1 activity were isolated for orthotopic tumor-initiating studies, where tumorigenicity was approximately 50-fold higher with ALDH1A1-positive cells. Interestingly, tumors derived from ALDH1A1-positive cells gave rise to both ALDH1A1-positive and ALDH1A1-negative populations, but ALDH1A1-negative cells could not generate ALDH1A1-positive cells. In an in vivo orthotopic mouse model of ovarian cancer, ALDH1A1 silencing using nanoliposomal siRNA sensitized both taxane- and platinum-resistant cell lines to chemotherapy, significantly reducing tumor growth in mice compared with chemotherapy alone (a 74%-90% reduction; P < 0.015). These data show that the ALDH1A1 subpopulation is associated with chemoresistance and outcome in ovarian cancer patients, and targeting ALDH1A1 sensitizes resistant cells to chemotherapy. ALDH1A1-positive cells have enhanced, but not absolute, tumorigenicity but do have differentiation capacity lacking in ALDH1A1-negative cells. This enzyme may be important for identification and targeting of chemoresistant cell populations in ovarian cancer.
Collapse
Affiliation(s)
- Charles N Landen
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ho KK, Mukhopadhyay A, Li YF, Mukhopadhyay S, Weiner H. A point mutation produced a class 3 aldehyde dehydrogenase with increased protective ability against the killing effect of cyclophosphamide. Biochem Pharmacol 2008; 76:690-6. [PMID: 18647600 PMCID: PMC2573387 DOI: 10.1016/j.bcp.2008.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 11/28/2022]
Abstract
Cyclophosphamides are pro-drugs whose killing agent is produced from an aldehyde that is formed by the action of a P450 oxidation step. The mustard from the aldehyde can destroy bone marrow cells as well as the tumor. Aldehyde dehydrogenase (EC 1.2.1.3) can oxidize the aldehyde and hence inactivate the cytotoxic intermediate but bone marrow has little, if any, of the enzyme. Others have shown that over-expression of the enzyme can afford protection of the marrow. A T186S mutant of the human stomach enzyme (ALDH3) that we developed has increased activity against the aldehyde compared to the native enzyme and HeLa cells transformed with the point mutant are better protected against the killing effect of the drug. It took threefold more drug to kill 90% of the cells transformed with the mutant compared to the native enzyme (15.8 compared to 5.1mM of a precursor of the toxic aldehyde). Analysis of molecular models makes it appear that removing the methyl group of threonine in the T186S mutant allows the bulky aldehyde to bind better. The mutant was found to be a poorer enzyme when small substrates such as benzaldehyde derivatives were investigated. Thus, the enzyme appears to be better only with large substrates such as the one produced by cyclophosphamide.
Collapse
Affiliation(s)
- Kwok Ki Ho
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 175 S. University Street, West Lafayette, Indiana 47907-2063, Phone: (765) 494-1650, Fax: (765) 494-7897
| | - Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 175 S. University Street, West Lafayette, Indiana 47907-2063, Phone: (765) 494-1650, Fax: (765) 494-7897
| | - Yi Feng Li
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 175 S. University Street, West Lafayette, Indiana 47907-2063, Phone: (765) 494-1650, Fax: (765) 494-7897
| | - Soma Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 175 S. University Street, West Lafayette, Indiana 47907-2063, Phone: (765) 494-1650, Fax: (765) 494-7897
| | - Henry Weiner
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, 175 S. University Street, West Lafayette, Indiana 47907-2063, Phone: (765) 494-1650, Fax: (765) 494-7897
| |
Collapse
|
19
|
Le Moguen K, Lincet H, Deslandes E, Hubert-Roux M, Lange C, Poulain L, Gauduchon P, Baudin B. Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1-R10. Proteomics 2006; 6:5183-92. [PMID: 16941573 DOI: 10.1002/pmic.200500925] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is one of the leading causes of mortality due to gynaecological cancer. Despite a good response to surgery and initial chemotherapy essentially based on cisplatin (cis-diamino-dichloro-platinum(II) (CDDP)) compounds, late tumour detection and frequent recurrences with chemoresistance acquisition are responsible for poor prognosis. Several mechanisms have been implicated in CDDP resistance but they are not sufficient to exhaustively explain this resistance emergence. We applied a proteomic approach based on 2-DE coupled with MS to identify proteins associated with the chemoresistance process. We first established a proteomic pattern of the CDDP sensitive ovarian cell line IGROV1 using MALDI-TOF-MS and PMF. We then compared this 2-D pattern with that of the CDDP-resistant counterpart IGROV1-R10. Among the 40 proteins identified, cytokeratins 8 and 18 and aldehyde dehydrogenase 1 were overexpressed in IGROV1-R10, whereas annexin IV was down-regulated. These observations have been confirmed by Western blotting. The characterization of such variations could lead to the development of new protein markers or to the establishment of new therapeutic strategies. Moreover, the identification of proteins involved in CDDP resistance in ovarian tumours would be useful in completing our understanding on this complex mechanism.
Collapse
|
20
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cyclophosphamide is an extensively used anticancer and immunosuppressive agent. It is a prodrug undergoing a complicated process of metabolic activation and inactivation. Technical difficulties in the accurate determination of the cyclophosphamide metabolites have long hampered the assessment of the clinical pharmacology of this drug. As these techniques are becoming increasingly available, adequate description of the pharmacokinetics of cyclophosphamide and its metabolites has become possible. There is incomplete understanding on the role of cyclophosphamide metabolites in the efficacy and toxicity of cyclophosphamide therapy. However, relationships between toxicity (cardiotoxicity, veno-occlusive disease) and exposure to cyclophosphamide and its metabolites have been established. Variations in the balance between metabolic activation and inactivation of cyclophosphamide owing to autoinduction, dose escalation, drug-drug interactions and individual differences have been reported, suggesting possibilities for optimisation of cyclophosphamide therapy. Knowledge of the pharmacokinetics of cyclophosphamide, and possibly monitoring the pharmacokinetics of cyclophosphamide in individuals, may be useful for improving its therapeutic index.
Collapse
Affiliation(s)
- Milly E de Jonge
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Sládek NE. Leukemic cell insensitivity to cyclophosphamide and other oxazaphosphorines mediated by aldehyde dehydrogenase(s). Cancer Treat Res 2003; 112:161-75. [PMID: 12481716 DOI: 10.1007/978-1-4615-1173-1_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Norman E Sládek
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Giorgianni F, Bridson PK, Sorrentino BP, Pohl J, Blakley RL. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol 2000; 60:325-38. [PMID: 10856427 DOI: 10.1016/s0006-2952(00)00344-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumors resistant to chemotherapeutic oxazaphosphorines such as cyclophosphamide often overexpress aldehyde dehydrogenase (ALDH), some isozymes of which catalyze the oxidization of aldophosphamide, an intermediate of cyclophosphamide activation, with formation of inert carboxyphosphamide. Since resistance to oxazaphosphorines can be produced in mammalian cells by transfecting them with the gene for human ALDH isozyme 3 (hALDH3), it seems possible that patients receiving therapy for solid tumors with cyclophosphamide might be protected from myelosuppression by their prior transplantation with autologous bone marrow that has been transduced with a retroviral vector causing overexpression of hALDH3. We investigated whether retroviral introduction of hALDH3 into a human leukemia cell line confers resistance to oxazaphosphorines. This was examined in the polyclonal transduced population, that is, without selecting out high expression clones. hALDH3 activity was 0.016 IU/mg protein in the transduced cells (compared with 2x10(-5) IU/mg in untransduced cells), but there was no detectable resistance to aldophosphamide-generating compounds (mafosfamide or 4-hydroperoxycyclophosphamide). The lack of protection was due, in part, to low catalytic activity of hALDH3 towards aldophosphamide, since, with NAD as cofactor, the catalytic efficiency of homogeneous, recombinant hALDH3 for aldophosphamide oxidation was shown to be about seven times lower than that of recombinant hALDH1. The two polymorphic forms of hALDH3 had identical kinetics with either benzaldehyde or aldophosphamide as substrate. Results of initial velocity measurements were consistent with an ordered sequential mechanism for ALDH1 but not for hALDH3; a kinetic mechanism for the latter is proposed, and the corresponding rate equation is presented.
Collapse
Affiliation(s)
- F Giorgianni
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 38105, Memphis, TN, USA
| | | | | | | | | |
Collapse
|
24
|
Tsukamoto N, Chen J, Yoshida A. Enhanced expressions of glucose-6-phosphate dehydrogenase and cytosolic aldehyde dehydrogenase and elevation of reduced glutathione level in cyclophosphamide-resistant human leukemia cells. Blood Cells Mol Dis 1998; 24:231-8. [PMID: 9714700 DOI: 10.1006/bcmd.1998.0188] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevation of activity and mRNA level of a cytosolic aldehyde dehydrogenase-1 (ALDH1), which oxidizes aldophosphamide, was previously observed in a cyclophosphamide-resistant murine leukemia cell line. However, changes in other enzyme(s) which may detoxify the drug or produce anti-alkylating agent(s), have not been examined. The human leukemia cell line, K562, was made 30-fold resistant against 4-hydroperoxycyclophosphamide (4HC) by exposing the cells to increasing concentrations of the drug. Resistance against cisplatin was also increased by about 3-fold. Activities of glucose-6-phosphate dehydrogenase (G6PD) and ALDH1 were elevated more than 7-fold in the resistant cells. The mRNA level of the two enzymes was also proportionally elevated. The concentration of reduced glutathione (GSH) was higher in the resistant cells (i.e., 21.1 versus 4.68 nmole per 10(6) cells), while activities of gamma-glutamylcysteine synthetase and glutathione synthetase, and the expressions of other human ALDH genes were not increased in the resistant cells. These findings suggest that the acquired resistance against 4HC is a consequence of transcriptional activation of two genes, i.e., one encoding the G6PD, a major enzyme regenerating anti-alkylating GSH, and the other encoding ALDH1, which has a high activity for oxidation of aldophosphamide derived from 4HC.
Collapse
Affiliation(s)
- N Tsukamoto
- Gunma University School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
25
|
Protection of Hematopoietic Progenitor Cells from Chemotherapy Toxicity by Transfer of Drug Resistance Genes. Gene Ther 1998. [DOI: 10.1007/978-3-662-03577-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
López-Fernández LA, del Mazo J. The cytosolic aldehyde dehydrogenase gene (Aldh1) is developmentally expressed in Leydig cells. FEBS Lett 1997; 407:225-9. [PMID: 9166904 DOI: 10.1016/s0014-5793(97)00352-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytosolic aldehyde dehydrogenase, ALDH1, participates in the oxidation of different aldehydes including that of all-trans retinal to retinoic acid. The accumulation of mouse Aldh1 transcripts is characterized by having different patterns in different tissues. This paper reports the greatest expression of Aldh1 in testis and liver. It was demonstrated that in testis, Aldh1 is specifically expressed in Leydig cells and is under developmental regulation. In vitro studies of cultured Leydig TM3 cells confirmed these results though such gene expression was found not to be mediated by LH regulation. Previous investigations have associated androgen receptors, and hence the androgen insensitivity syndrome in man, with the presence of ALDH1 in genital skin fibroblasts. However, this relationship was not established in a functional cell type, as is reported here for Leydig cells. These results could suggest a model for a molecular pathway from androgen receptor to retinoic acid biogenesis in Leydig cells via the mediation of ALDH.
Collapse
Affiliation(s)
- L A López-Fernández
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas (C.S.I.C.), Velázquez, Madrid, Spain
| | | |
Collapse
|
27
|
Letourneau S, Greenbaum M, Cournoyer D. Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers in vitro resistance to alkylating agents in human leukemia cells and in clonogenic mouse hematopoietic progenitor cells. Hum Gene Ther 1996; 7:831-40. [PMID: 8860835 DOI: 10.1089/hum.1996.7.7-831] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recently, we have reported that N2Yc, a Moloney-based retrovirus vector expressing the Yc isoform of rat glutathione S-transferase (GST-Yc), conferred resistance to alkylating agents in mouse NIH-3T3 fibroblasts. In this report, we address the feasibility of using rat GST-Yc somatic gene transfer to confer chemoprotection to the hematopoietic system. Human chronic myelogenous leukemia K-562 cells were efficiently transduced with the N2Yc retrovirus vector and showed a significant increase in the 50% inhibitory concentration of chlorambucil (3.2- to 3.3-fold), mechlorethamine (4.7- to 5.3-fold), and melphalan (2.1- to 2.2-fold). In addition, primary murine clonogenic hematopoietic progenitor cells transduced with the N2Yc vector were significantly more resistant to alkylating agents in vitro than cells transduced with the antisense N2revYc vector. The survival of Yc-transduced hematopoietic colonies at 400 nM mechlorethamine and 4 mu M chlorambucil was 39.4% and 42.6%, respectively, compared to 27.2% and 30.4% for N2revYc-transduced cells. Future experiments will determine the level of chemoprotection achievable in vivo, following transplantation of N2Yc-transduced hematopoietic cells in mice.
Collapse
Affiliation(s)
- S Letourneau
- Department of Medicine, Montreal General Hospital, Montreal, Canada
| | | | | |
Collapse
|
28
|
Chen J, Yanagawa Y, Yoshida A. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver. Biochem Genet 1996; 34:109-16. [PMID: 8734411 DOI: 10.1007/bf02396244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5'-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5'-promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver.
Collapse
Affiliation(s)
- J Chen
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | |
Collapse
|
29
|
Yanagawa Y, Chen JC, Hsu LC, Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem 1995; 270:17521-7. [PMID: 7615557 DOI: 10.1074/jbc.270.29.17521] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human cytosolic aldehyde dehydrogenase 1 (ALDH1) plays a role in the biosynthesis of retinoic acid that is a modulator for gene expression and cell differentiation. Northern blot analysis showed that liver tissue, pancreas tissue, hepatoma cells, and genital skin fibroblast cells expressed high levels of ALDH1. Sequence analysis showed that the 5'-flanking region contains a number of putative regulatory elements, such as NF-IL6, HNF-5, GATA binding sites, and putative response elements for interleukin-6, phenobarbital and androgen, in addition to a noncanonical TATA box (ATAAA) and a CCAAT box. Functional characterization of the 5'-regulatory region of the human ALDH1 gene was carried out by a fusion to the chloramphenicol acetyltransferase gene. A construct containing 2.6 kilobase pairs of the 5'-flanking region was efficiently expressed in hepatoma Hep3B cells, but not in erythroleukemic K562 cells or in fibroblast LTK- cells, which do not express ALDH1. Within this region, we define a minimal promoter (-91 to +53) that contains positive regulatory elements. The study using site-directed mutagenesis demonstrated that the CCAAT box region is the major cis-acting element involved in basal ALDH1 promoter activity in Hep3B cells. Gel mobility shift assays showed that NF-Y and other octamer factors bound CCAAT box and an octamer motif sequence, but not GATA site existing in the minimal promoter region. Two additional DNA binding activities associated with the minimal promoter were found in the nuclear extract from Hep3B cells, but not from K562 cells. These results offer the possible molecular mechanism of the cell type-specific expression of ALDH1 gene.
Collapse
Affiliation(s)
- Y Yanagawa
- Department of Biochemical Genetics, Bechman Research Institute, City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|