1
|
Alcorlo M, Luque-Ortega JR, Gago F, Ortega A, Castellanos M, Chacón P, de Vega M, Blanco L, Hermoso J, Serrano M, Rivas G, Hermoso J. Flexible structural arrangement and DNA-binding properties of protein p6 from Bacillus subtillis phage φ29. Nucleic Acids Res 2024; 52:2045-2065. [PMID: 38281216 PMCID: PMC10899789 DOI: 10.1093/nar/gkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024] Open
Abstract
The genome-organizing protein p6 of Bacillus subtilis bacteriophage φ29 plays an essential role in viral development by activating the initiation of DNA replication and participating in the early-to-late transcriptional switch. These activities require the formation of a nucleoprotein complex in which the DNA adopts a right-handed superhelix wrapping around a multimeric p6 scaffold, restraining positive supercoiling and compacting the viral genome. Due to the absence of homologous structures, prior attempts to unveil p6's structural architecture failed. Here, we employed AlphaFold2 to engineer rational p6 constructs yielding crystals for three-dimensional structure determination. Our findings reveal a novel fold adopted by p6 that sheds light on its self-association mechanism and its interaction with DNA. By means of protein-DNA docking and molecular dynamic simulations, we have generated a comprehensive structural model for the nucleoprotein complex that consistently aligns with its established biochemical and thermodynamic parameters. Besides, through analytical ultracentrifugation, we have confirmed the hydrodynamic properties of the nucleocomplex, further validating in solution our proposed model. Importantly, the disclosed structure not only provides a highly accurate explanation for previously experimental data accumulated over decades, but also enhances our holistic understanding of the structural and functional attributes of protein p6 during φ29 infection.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Federico Gago
- Departamento de Farmacología and CSIC-IQM Associate Unit, Universidad de Alcalá, Alcalá de Henares, 28871Madrid, Spain
| | - Alvaro Ortega
- Department of Biochemistry and Molecular Biology ‘B’ and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence ‘Campus Mare Nostrum, Murcia, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Nanotechnology for Health-Care, 28049 Madrid, Spain
| | - Pablo Chacón
- Department of Biological Physical-Chemistry, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006Madrid, Spain
| | - Miguel de Vega
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Luis Blanco
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - José M Hermoso
- Genome maintenance and instability, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049Cantoblanco, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas “Margarita Salas”, CSIC, 28040Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Blas Cabrera”, CSIC, 28006 Madrid, Spain
| |
Collapse
|
2
|
The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site. Biomolecules 2019; 9:biom9110648. [PMID: 31653090 PMCID: PMC6921018 DOI: 10.3390/biom9110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage Phi29 DNA polymerase belongs to the protein-primed subgroup of family B DNA polymerases that use a terminal protein (TP) as a primer to initiate genome replication. The resolution of the crystallographic structure showed that it consists of an N-terminal domain with the exonuclease activity and a C-terminal polymerization domain. It also has two subdomains specific of the protein-primed DNA polymerases; the TP Regions 1 (TPR1) that interacts with TP and DNA, and 2 (TPR2), that couples both processivity and strand displacement to the enzyme. The superimposition of the structures of the apo polymerase and the polymerase in the polymerase/TP heterodimer shows that the structural changes are restricted almost to the TPR1 loop (residues 304–314). In order to study the role of this loop in binding the DNA and the TP, we changed the residues Arg306, Arg308, Phe309, Tyr310, and Lys311 into alanine, and also made the deletion mutant Δ6 lacking residues Arg306–Lys311. The results show a defective TP binding capacity in mutants R306A, F309A, Y310A, and Δ6. The additional impaired primer-terminus stabilization at the polymerization active site in mutants Y310A and Δ6 allows us to propose a role for the Phi29 DNA polymerase TPR1 loop in the proper positioning of the DNA and TP-priming 3’-OH termini at the preinsertion site of the polymerase to enable efficient initiation and further elongation steps during Phi29 TP-DNA replication.
Collapse
|
3
|
Del Prado A, Rodríguez I, Lázaro JM, Moreno-Morcillo M, de Vega M, Salas M. New insights into the coordination between the polymerization and 3'-5' exonuclease activities in ϕ29 DNA polymerase. Sci Rep 2019; 9:923. [PMID: 30696917 PMCID: PMC6351526 DOI: 10.1038/s41598-018-37513-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage ϕ29 DNA polymerase has two activities: DNA polymerization and 3′-5′ exonucleolysis governed by catalytic sites present in two structurally distant domains. These domains must work together to allow the correct replication of the template and to prevent the accumulation of errors in the newly synthesized DNA strand. ϕ29 DNA polymerase is endowed with a high processivity and strand displacement capacity together with a high fidelity. Previous studies of its crystallographic structure suggested possible interactions of residues of the exonuclease domain like the Gln180 with the fingers subdomain, or water mediated and direct hydrogen bond by the polar groups of residues Tyr101 and Thr189 that could stabilize DNA binding. To analyse their functional importance for the exonuclease activity of ϕ29 DNA polymerase we engineered mutations to encode amino acid substitutions. Our results confirm that both residues, Tyr101 and Thr189 are involved in the 3′-5′ exonuclease activity and in binding the dsDNA. In addition, Tyr101 is playing a role in processivity and Thr189 is an important determinant in the fidelity of the DNA polymerase. On the other hand, the biochemical characterization of the mutant derivatives of residue Gln180 showed how the mutations introduced enhanced the 3′-5′ exonuclease activity of the enzyme. A potential structural conformation prone to degrade the substrate is discussed.
Collapse
Affiliation(s)
- Alicia Del Prado
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Irene Rodríguez
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - José María Lázaro
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - María Moreno-Morcillo
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Zheng X, Xing XH, Zhang C. Targeted mutagenesis: A sniper-like diversity generator in microbial engineering. Synth Syst Biotechnol 2017; 2:75-86. [PMID: 29062964 PMCID: PMC5636951 DOI: 10.1016/j.synbio.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations, serving as the raw materials of evolution, have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. Global and targeted mutagenesis are two main methods of obtaining various mutations, distinguished by the range of action they can cover. While the former one stresses the mining of novel genetic loci within the whole genomic background, targeted mutagenesis performs in a more straightforward manner, bringing evolutionary escape and error catastrophe under control. In this review, we classify the existing techniques of targeted mutagenesis into two categories in terms of whether the diversity is generated in vitro or in vivo, and briefly introduce the mechanisms and applications of them separately. The inherent connections and development trends of the two classes are also discussed to provide an insight into the next generation evolution research.
Collapse
Key Words
- 3′-LTR, 3’-long terminal repeat
- 5-FOA, 5-fluoro-orotic acid
- CRISPR/Cas9, clustered regularly interspaced short palindromic repeats and associated protein 9
- DNA Pol III, DNA polymerase III
- DNA PolI, DNA polymerase I
- DSB, double strand break
- Evolution
- FLASH, fast ligation-based automatable solid-phase high-throughput
- HDR, homology-directed repair
- HIV, human immunodeficiency virus
- ICE, in vivo continuous evolution
- LIC, ligation-independent cloning
- MAGE, multiplex automated genome engineering
- MMEJ, microhomology-mediated end-joining
- Mutations
- NHEJ, error-prone non-homologous end-joining
- ORF, open reading frame
- PAM, protospacer-adjacent motif
- RVD, repeat variable di-residue
- Synthetic biology
- TALE, transcription activator-like effector
- TALEN, transcription activator-like effector nuclease
- TP, terminal protein
- TP-DNAP, TP-DNA polymerase fusion
- TaGTEAM, targeting glycosylase to embedded arrays for mutagenesis
- Targeted mutagenesis
- YOGE, yeast oligo-mediated genome engineering
- ZF, zinc-finger protein
- ZFN, zinc-finger nuclease
- dCas9, catalytically dead Cas9
- dNTP, deoxy-ribonucleoside triphosphate
- dsDNA, double-stranded DNA
- error-prone PCR, error-prone polymerase chain reaction
- non-GMO, non-genetically modified organism
- pre-crRNA, pre-CRISPR RNA
- sctetR, single chain tetR
- sgRNA, single-guide RNA
- ssDNA, single-stranded DNA
- tracrRNA, trans-encoded RNA
Collapse
Affiliation(s)
| | | | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Center for Synthetic & Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Abstract
The requirement of DNA polymerases for a 3'-hydroxyl (3'-OH) group to prime DNA synthesis raised the question about how the ends of linear chromosomes could be replicated. Among the strategies that have evolved to handle the end replication problem, a group of linear phages and eukaryotic and archaeal viruses, among others, make use of a protein (terminal protein, TP) that primes DNA synthesis from the end of their genomes. The replicative DNA polymerase recognizes the OH group of a specific residue in the TP to initiate replication that is guided by an internal 3' nucleotide of the template strand. By a sliding-back mechanism or variants of it the terminal nucleotide(s) is(are) recovered and the TP becomes covalently attached to the genome ends. Bacillus subtilis phage ϕ29 is the organism in which such a mechanism has been studied more extensively, having allowed to lay the foundations of the so-called protein-primed replication mechanism. Here we focus on the main biochemical and structural features of the two main proteins responsible for the protein-primed initiation step: the DNA polymerase and the TP. Thus, we will discuss the structural determinants of the DNA polymerase responsible for its ability to use sequentially a TP and a DNA as primers, as well as for its inherent capacity to couple high processive synthesis to strand displacement. On the other hand, we will review how TP primes initiation followed by a transition step for further DNA-primed replication by the same polymerase molecule. Finally, we will review how replication is compartmentalized in vivo.
Collapse
Affiliation(s)
- M Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - M de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
6
|
Gella P, Salas M, Mencía M. Improved artificial origins for phage Φ29 terminal protein-primed replication. Insights into early replication events. Nucleic Acids Res 2014; 42:9792-806. [PMID: 25081208 PMCID: PMC4150772 DOI: 10.1093/nar/gku660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The replication machinery of bacteriophage Φ29 is a paradigm for protein-primed replication and it holds great potential for applied purposes. To better understand the early replication events and to find improved origins for DNA amplification based on the Φ29 system, we have studied the end-structure of a double-stranded DNA replication origin. We have observed that the strength of the origin is determined by a combination of factors. The strongest origin (30-fold respect to wt) has the sequence CCC at the 3' end of the template strand, AAA at the 5' end of the non-template strand and 6 nucleotides as optimal unpairing at the end of the origin. We also show that the presence of a correctly positioned displaced strand is important because origins with 5' or 3' ssDNA regions have very low activity. Most of the effect of the improved origins takes place at the passage between the terminal protein-primed and the DNA-primed modes of replication by the DNA polymerase suggesting the existence of a thermodynamic barrier at that point. We suggest that the template and non-template strands of the origin and the TP/DNA polymerase complex form series of interactions that control the critical start of terminal protein-primed replication.
Collapse
Affiliation(s)
- Pablo Gella
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Mario Mencía
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
7
|
Santos E, Lázaro JM, Pérez-Arnaiz P, Salas M, de Vega M. Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide. J Biol Chem 2013; 289:2888-98. [PMID: 24324256 DOI: 10.1074/jbc.m113.530980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding ϕ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg(2+) ions, a reaction highly improved when Mn(2+) was used as metal activator. These results, together with previous crystallographic resolution of ϕ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg(2+). Recovery of both reactions with Mn(2+) supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP.
Collapse
Affiliation(s)
- Eugenia Santos
- From the Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Holguera I, Redrejo-Rodríguez M, Salas M, Muñoz-Espín D. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions. Mol Microbiol 2013; 91:232-41. [PMID: 24205926 DOI: 10.1111/mmi.12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
Protein-primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ϕ29, the N-terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ϕ29 TP N-terminal domain, which possesses sequence-independent DNA-binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N-terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA-binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.
Collapse
Affiliation(s)
- Isabel Holguera
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
9
|
del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 2013; 8:e72765. [PMID: 24023769 PMCID: PMC3762793 DOI: 10.1371/journal.pone.0072765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José M. Lázaro
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
10
|
Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci U S A 2013; 110:12313-8. [PMID: 23836667 DOI: 10.1073/pnas.1311524110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During evolution, viruses have optimized the interaction with host factors to increase the efficiency of fundamental processes such as DNA replication. Bacteriophage 29 protein p1 is a membrane-associated protein that forms large protofilament sheets that resemble eukaryotic tubulin and bacterial filamenting temperature-sensitive mutant Z protein (FtsZ) polymers. In the absence of protein p1, phage 29 DNA replication is impaired. Here we show that a functional fusion of protein p1 to YFP localizes at the medial region of Bacillus subtilis cells independently of other phage-encoded proteins. We also show that 29 protein p1 colocalizes with the B. subtilis cell division protein FtsZ and provide evidence that FtsZ and protein p1 are associated. Importantly, the midcell localization of YFP-p1 was disrupted in a strain that does not express FtsZ, and the fluorescent signal was distributed all over the cell. Depletion of penicillin-binding protein 2B (PBP2B) in B. subtilis cells did not affect the subcellular localization of YFP-p1, indicating that its distribution does not depend on septal wall synthesis. Interestingly, when 29 protein p1 was expressed, B. subtilis cells were about 1.5-fold longer than control cells, and the accumulation of 29 DNA was higher in mutant B. subtilis cells with increased length. We discuss the biological role of p1 and FtsZ in the 29 growth cycle.
Collapse
|
11
|
Rodríguez I, Longás E, de Vega M, Salas M. The essential role of the 3' terminal template base in the first steps of protein-primed DNA replication. PLoS One 2012; 7:e48257. [PMID: 23110220 PMCID: PMC3480470 DOI: 10.1371/journal.pone.0048257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages φ29 and Nf from Bacillus subtilis start replication of their linear genomes at both ends using a protein-primed mechanism by means of which the DNA polymerase initiates replication by adding dAMP to the terminal protein, this insertion being directed by the second and third 3′ terminal thymine of the template strand, respectively. In this work, we have obtained evidences about the role of the 3′ terminal base during the initiation steps of φ29 and Nf genome replication. The results indicate that the absence of the 3′ terminal base modifies the initiation position carried out by φ29 DNA polymerase in such a way that now the third position of the template, instead of the second one, guides the incorporation of the initiating nucleotide. In the case of Nf, although the lack of the 3′ terminal base has no effect on the initiation position, its absence impairs further elongation of the TP-dAMP initiation product. The results show the essential role of the 3′ terminal base in guaranteeing the correct positioning of replication origins at the polymerization active site to allow accurate initiation of replication and further elongation.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Elisa Longás
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Disclosing the in vivo organization of a viral histone-like protein in Bacillus subtilis mediated by its capacity to recognize the viral genome. Proc Natl Acad Sci U S A 2012; 109:5723-8. [PMID: 22451942 DOI: 10.1073/pnas.1203824109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organization of replicating prokaryotic genomes requires architectural elements that, similarly to eukaryotic systems, induce topological changes such as DNA supercoiling. Bacteriophage 29 protein p6 has been described as a histone-like protein that compacts the viral genome by forming a nucleoprotein complex and plays a key role in the initiation of protein-primed DNA replication. In this work, we analyze the subcellular localization of protein p6 by immunofluorescence microscopy and show that, at early infection stages, it localizes in a peripheral helix-like configuration. Later, at middle infection stages, protein p6 is recruited to the bacterial nucleoid. This migrating process is shown to depend on the synthesis of components of the 29 DNA replication machinery (i.e., terminal protein and DNA polymerase) needed for the replication of viral DNA, which is required to recruit the bulk of protein p6. Importantly, the double-stranded DNA-binding capacity of protein p6 is essential for its relocalization at the nucleoid. Altogether, the results disclose the in vivo organization of a viral histone-like protein in bacteria.
Collapse
|
13
|
Butcher SJ, Manole V, Karhu NJ. Lipid-containing viruses: bacteriophage PRD1 assembly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:365-77. [PMID: 22297522 DOI: 10.1007/978-1-4614-0980-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PRD1 is a tailless icosahedrally symmetric virus containing an internal lipid membrane beneath the protein capsid. Its linear dsDNA genome and covalently attached terminal proteins are delivered into the cell where replication occurs via a protein-primed mechanism. Extensive studies have been carried out to decipher the roles of the 37 viral proteins in PRD1 assembly, their association in virus particles and lately, especially the functioning of the unique packaging machinery that translocates the genome into the procapsid. These issues will be addressed in this chapter especially in the context of the structure of PRD1. We will also discuss the major challenges still to be addressed in PRD1 assembly.
Collapse
Affiliation(s)
- Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
14
|
del Prado A, Villar L, de Vega M, Salas M. Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase. Nucleic Acids Res 2011; 40:3886-97. [PMID: 22210885 PMCID: PMC3351185 DOI: 10.1093/nar/gkr1283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriophage Φ29 genome consists of a linear double-stranded DNA with a terminal protein (TP) covalently linked to each 5' end (TP-DNA) that together with a specific sequence constitutes the replication origins. To initiate replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the origins and initiates replication using as primer the hydroxyl group of TP residue Ser232. The 3D structure of the DNA polymerase/TP heterodimer allowed the identification of TP residues that could be responsible for interaction with the DNA polymerase. Here, we examined the role of TP residues Arg158, Arg169, Glu191, Asp198, Tyr250, Glu252, Gln253 and Arg256 by in vitro analyses of mutant derivatives. The results showed that substitution of these residues had an effect on either the stability of the TP/DNA polymerase complex (R158A) or in the functional interaction of the TP at the polymerization active site (R169A, E191A, Y250A, E252A, Q253A and R256A), affecting the first steps of Φ29 TP-DNA replication. These results allow us to propose a role for these residues in the maintenance of the equilibrium between TP-priming domain stabilization and its gradual exit from the polymerization active site of the DNA polymerase as new DNA is being synthesized.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Mol Microbiol 2011; 80:1657-66. [PMID: 21542855 DOI: 10.1111/j.1365-2958.2011.07675.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a conserved DNA repair enzyme involved in uracil excision from DNA. Here, we report the biochemical characterization of UDG encoded by Bacillus subtilis, a model low G+C Gram-positive organism. The purified enzyme removes uracil preferentially from single-stranded DNA over double-stranded DNA, exhibiting higher preference for U:G than U:A mismatches. Furthermore, we have identified key amino acids necessary for B. subtilis UDG activity. Our results showed that Asp-65 and His-187 are catalytic residues involved in glycosidic bond cleavage, whereas Phe-78 would participate in DNA recognition. Recently, it has been reported that B. subtilis phage φ29 encodes an inhibitor of the UDG enzyme, named protein p56, whose role has been proposed to ensure an efficient viral DNA replication, preventing the deleterious effect caused by UDG when it eliminates uracils present in the φ29 genome. In this work, we also show that a φ29-related phage, GA-1, encodes a p56-like protein with UDG inhibition activity. In addition, mutagenesis analysis revealed that residue Phe-191 of B. subtilis UDG is critical for the interaction with φ29 and GA-1 p56 proteins, suggesting that both proteins have similar mechanism of inhibition.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid. Proc Natl Acad Sci U S A 2010; 107:16548-53. [PMID: 20823229 DOI: 10.1073/pnas.1010530107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism leading to protein-primed DNA replication has been studied extensively in vitro. However, little is known about the in vivo organization of the proteins involved in this fundamental process. Here we show that the terminal proteins (TPs) of phages ϕ29 and PRD1, infecting the distantly related bacteria Bacillus subtilis and Escherichia coli, respectively, associate with the host bacterial nucleoid independently of other viral-encoded proteins. Analyses of phage ϕ29 revealed that the TP N-terminal domain (residues 1-73) possesses sequence-independent DNA-binding capacity and is responsible for its nucleoid association. Importantly, we show that in the absence of the TP N-terminal domain the efficiency of ϕ29 DNA replication is severely affected. Moreover, the TP recruits the phage DNA polymerase to the bacterial nucleoid, and both proteins later are redistributed to enlarged helix-like structures in an MreB cytoskeleton-dependent way. These data disclose a key function for the TP in vivo: organizing the early viral DNA replication machinery at the cell nucleoid.
Collapse
|
17
|
phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation. J Mol Biol 2009; 395:223-33. [PMID: 19883660 DOI: 10.1016/j.jmb.2009.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/19/2009] [Accepted: 10/27/2009] [Indexed: 11/23/2022]
Abstract
DNA polymerases require two acidic residues to coordinate metal ions A and B at their polymerisation active site during catalysis of nucleotide incorporation. Crystallographic resolution of varphi29 DNA polymerase ternary complex showed that metal B coordination also depends on the carbonyl group of Val250 that belongs to the highly conserved Dx(2)SLYP motif of eukaryotic-type (family B) DNA polymerases. In addition, multiple sequence alignments have shown the specific conservation of this residue among the DNA polymerases that use a protein as primer. Thus, to ascertain its role in polymerisation, we have analysed the behaviour of single mutations introduced at the corresponding Val250 of varphi29 DNA polymerase. The differences in nucleotide binding affinity shown by mutants V250A and V250F with respect to the wild-type DNA polymerase agree to a role for Val250 as a metal B-dNTP complex ligand. In addition, mutant V250F was severely affected in varphi29 DNA replication because of a large reduction in the catalytic efficiency of the protein-primed reactions. In the light of the varphi29 DNA polymerase structures, a role for Val250 residue in the maintenance of the proper architecture of the enzyme to perform the protein-primed reactions is also proposed.
Collapse
|
18
|
Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. J Mol Biol 2009; 391:797-807. [PMID: 19576228 DOI: 10.1016/j.jmb.2009.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/17/2022]
Abstract
Recent crystallographic resolution of varphi29 DNA polymerase complexes with ssDNA at its 3'-5' exonuclease active site has allowed the identification of residues Pro129 and Tyr148 as putative ssDNA ligands, the latter being conserved in the Kx(2)h motif of proofreading family B DNA polymerases. Single substitution of varphi29 DNA polymerase residue Tyr148 to Ala rendered an enzyme with a reduced capacity to stabilize the binding of the primer terminus at the 3'-5' exonuclease active site, not having a direct role in the catalysis of the reaction. Analysis of the 3'-5' exonuclease on primer/template structures showed a critical role for residue Tyr148 in the proofreading of DNA polymerisation errors. In addition, Tyr148 is not involved in coupling polymerisation to strand displacement in contrast to the catalytic residues responsible for the exonuclease reaction, its role being restricted to stabilisation of the frayed 3' terminus at the exonuclease active site. Altogether, the results lead us to extend the consensus sequence of the above motif of proofreading family B DNA polymerases into Kx(2)hxA. The different solutions adopted by proofreading DNA polymerases to stack the 3' terminus at the exonuclease site are discussed. In addition, the results obtained with mutants at varphi29 DNA polymerase residue Pro129 allow us to rule out a functional role as ssDNA ligand for this residue.
Collapse
Affiliation(s)
- Patricia Pérez-Arnaiz
- Instituto de Biología Molecular "Eladio Viñuela", Centro de Biología Molecular "Severo Ochoa", Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Rodríguez I, Lázaro JM, Salas M, de Vega M. Involvement of the TPR2 subdomain movement in the activities of phi29 DNA polymerase. Nucleic Acids Res 2008; 37:193-203. [PMID: 19033368 PMCID: PMC2615600 DOI: 10.1093/nar/gkn928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The polymerization domain of phi29 DNA polymerase acquires a toroidal shape by means of an arch-like structure formed by the specific insertion TPR2 (Terminal Protein Region 2) and the thumb subdomain. TPR2 is connected to the fingers and palm subdomains through flexible regions, suggesting that it can undergo conformational changes. To examine whether such changes take place, we have constructed a phi29 DNA polymerase mutant able to form a disulfide bond between the apexes of TPR2 and thumb to limit the mobility of TPR2. Biochemical analysis of the mutant led us to conclude that TPR2 moves away from the thumb to allow the DNA polymerase to replicate circular ssDNA. Despite the fact that no TPR2 motion is needed to allow the polymerase to use the terminal protein (TP) as primer during the initiation of phi29 TP-DNA replication, the disulfide bond prevents the DNA polymerase from entering the elongation phase, suggesting that TPR2 movements are necessary to allow the TP priming domain to move out from the polymerase during transition from initiation to elongation. Furthermore, the TPR2-thumb bond does not affect the equilibrium between the polymerization and exonuclease activities, leading us to propose a primer-terminus transference model between both active sites.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Phage phi29 and Nf terminal protein-priming domain specifies the internal template nucleotide to initiate DNA replication. Proc Natl Acad Sci U S A 2008; 105:18290-5. [PMID: 19011105 DOI: 10.1073/pnas.0809882105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages phi29 and Nf from Bacillus subtilis start replication of their linear genome at both DNA ends by a protein-primed mechanism, by which the DNA polymerase, in a template-instructed reaction, adds 5'-dAMP to a molecule of terminal protein (TP) to form the initiation product TP-dAMP. Mutational analysis of the 3 terminal thymines of the Nf DNA end indicated that initiation of Nf DNA replication is directed by the third thymine on the template, the recovery of the 2 terminal nucleotides mainly occurring by a stepwise sliding-back mechanism. By using chimerical TPs, constructed by swapping the priming domain of the related phi29 and Nf proteins, we show that this domain is the main structural determinant that dictates the internal 3' nucleotide used as template during initiation.
Collapse
|
21
|
Salas M, Blanco L, Lázaro JM, de Vega M. The bacteriophage phi29 DNA polymerase. IUBMB Life 2008; 60:82-5. [PMID: 18379997 DOI: 10.1002/iub.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Margarita Salas
- Instituto de Biología Molecular Eladio Viñuela , Campus Universidad Autónoma, Canto Blanco, Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Alcorlo M, Salas M, Hermoso JM. In vivo DNA binding of bacteriophage GA-1 protein p6. J Bacteriol 2007; 189:8024-33. [PMID: 17873040 PMCID: PMC2168694 DOI: 10.1128/jb.01047-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/06/2007] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage GA-1 infects Bacillus sp. strain G1R and has a linear double-stranded DNA genome with a terminal protein covalently linked to its 5' ends. GA-1 protein p6 is very abundant in infected cells and binds DNA with no sequence specificity. We show here that it binds in vivo to the whole viral genome, as detected by cross-linking, chromatin immunoprecipitation, and real-time PCR analyses, and has the characteristics of a histone-like protein. Binding to DNA of GA-1 protein p6 shows little supercoiling dependency, in contrast to the ortholog protein of the evolutionary related Bacillus subtilis phage phi29. This feature is a property of the protein rather than the DNA or the cellular background, since phi29 protein p6 shows supercoiling-dependent binding to GA-1 DNA in Bacillus sp. strain G1R. GA-1 DNA replication is impaired in the presence of the gyrase inhibitors novobiocin and nalidixic acid, which indicates that, although noncovalently closed, the viral genome is topologically constrained in vivo. GA-1 protein p6 is also able to bind phi29 DNA in B. subtilis cells; however, as expected, the binding is less supercoiling dependent than the one observed with the phi29 protein p6. In addition, the nucleoprotein complex formed is not functional, since it is not able to transcomplement the DNA replication deficiency of a phi29 sus6 mutant. Furthermore, we took advantage of phi29 protein p6 binding to GA-1 DNA to find that the viral DNA ejection mechanism seems to take place, as in the case of phi29, with a right to left polarity in a two-step, push-pull process.
Collapse
Affiliation(s)
- Martín Alcorlo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
23
|
Pérez-Arnaiz P, Longás E, Villar L, Lázaro JM, Salas M, de Vega M. Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication. Nucleic Acids Res 2007; 35:7061-73. [PMID: 17913744 PMCID: PMC2175359 DOI: 10.1093/nar/gkm749] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To initiate ϕ29 DNA replication, the DNA polymerase has to form a complex with the homologous primer terminal protein (TP) that further recognizes the replication origins of the homologous TP-DNA placed at both ends of the linear genome. By means of chimerical proteins, constructed by swapping the priming domain of the related ϕ29 and GA-1 TPs, we show that DNA polymerase can form catalytically active heterodimers exclusively with that chimerical TP containing the N-terminal part of the homologous TP, suggesting that the interaction between the polymerase TPR-1 subdomain and the TP N-terminal part is the one mainly responsible for the specificity between both proteins. We also show that the TP N-terminal part assists the proper binding of the priming domain at the polymerase active site. Additionally, a chimerical ϕ29 DNA polymerase containing the GA-1 TPR-1 subdomain could use GA-1 TP, but only in the presence of ϕ29 TP-DNA as template, indicating that parental TP recognition is mainly accomplished by the DNA polymerase. The sequential events occurring during initiation of bacteriophage protein-primed DNA replication are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Margarita Salas
- *To whom correspondence should be addressed. +34 914978435+34 914978490
| | | |
Collapse
|
24
|
Longás E, de Vega M, Lázaro JM, Salas M. Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity. Nucleic Acids Res 2006; 34:6051-63. [PMID: 17071961 PMCID: PMC1635332 DOI: 10.1093/nar/gkl769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This paper shows that the protein-primed DNA polymerases encoded by bacteriophages Nf and GA-1, unlike other DNA polymerases, do not require unwinding or processivity factors for efficient synthesis of full-length terminal protein (TP)-DNA. Analysis of their polymerization activity shows that both DNA polymerases base their replication efficiency on a high processivity and on the capacity to couple polymerization to strand displacement. Both enzymes are endowed with a proofreading activity that acts coordinately with the polymerization one to edit polymerization errors. Additionally, Nf double-stranded DNA binding protein (DBP) greatly stimulated the in vitro formation of the TP-dAMP initiation complex by decreasing the Km value for dATP of the Nf DNA polymerase by >20-fold. Whereas Nf DNA polymerase, as the φ29 enzyme, is able to use its homologous TP as well as DNA as primer, GA-1 DNA polymerase appears to have evolved to use its corresponding TP as the only primer of DNA synthesis. Such exceptional behaviour is discussed in the light of the recently solved structure of the DNA polymerase/TP complex of the related bacteriophage φ29.
Collapse
Affiliation(s)
| | | | | | - Margarita Salas
- To whom correspondence should be addressed. Tel: +344 91 4978436; Fax: +34 91 4978490;
| |
Collapse
|
25
|
Castilla-Llorente V, Muñoz-Espín D, Villar L, Salas M, Meijer WJJ. Spo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication. EMBO J 2006; 25:3890-9. [PMID: 16888621 PMCID: PMC1553192 DOI: 10.1038/sj.emboj.7601266] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/10/2006] [Indexed: 11/09/2022] Open
Abstract
The transcription factor Spo0A is a master regulator for entry into sporulation in Bacillus subtilis and also regulates expression of the virulent B. subtilis phage phi29. Here, we describe a novel function for Spo0A, being an inhibitor of DNA replication of both, the phi29 genome and the B. subtilis chromosome. Binding of Spo0A near the phi29 DNA ends, constituting the two origins of replication of the linear phi29 genome, prevents formation of phi29 protein p6-nucleoprotein initiation complex resulting in inhibition of phi29 DNA replication. At the B. subtilis oriC, binding of Spo0A to specific sequences, which mostly coincide with DnaA-binding sites, prevents open complex formation. Thus, by binding to the origins of replication, Spo0A prevents the initiation step of DNA replication of either genome. The implications of this novel role of Spo0A for phage phi29 development and the bacterial chromosome replication during the onset of sporulation are discussed.
Collapse
Affiliation(s)
- Virginia Castilla-Llorente
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Daniel Muñoz-Espín
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Wilfried J J Meijer
- Instituto de Biología Molecular ‘Eladio Viñuela' (CSIC), Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
- Facultad de Ciencias, Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain. Tel.: (+34) 91 497 8434; Fax: (+34) 91 497 8490; E-mail:
| |
Collapse
|
26
|
Pérez-Arnaiz P, Lázaro JM, Salas M, de Vega M. Involvement of phi29 DNA polymerase thumb subdomain in the proper coordination of synthesis and degradation during DNA replication. Nucleic Acids Res 2006; 34:3107-15. [PMID: 16757576 PMCID: PMC1475753 DOI: 10.1093/nar/gkl402] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
φ29 DNA polymerase achieves a functional coupling between its 3′–5′ exonuclease and polymerization activities by means of important contacts with the DNA at both active sites. The placement and orientation of residues Lys538, Lys555, Lys557, Gln560, Thr571, Thr573 and Lys575 in a modelled φ29 DNA polymerase–DNA complex suggest a DNA-binding role. In addition, crystal structure of φ29 DNA polymerase–oligo (dT)5 complex showed Leu567, placed at the tip of the thumb subdomain, lying between the two 3′-terminal bases at the exonuclease site. Single replacement of these φ29 DNA polymerase residues by alanine was made, and mutant derivatives were overproduced and purified to homogeneity. The results obtained in the assay of their synthetic and degradative activities, as well as their coordination, allow us to propose: (1) a primer-terminus stabilization role at the polymerase active site for residues Lys538, Thr573 and Lys575, (2) a primer-terminus stabilization role at the exonuclease active site for residues Leu567 and Lys555 and (3) a primer-terminus binding role in both editing and polymerization modes for residue Gln560. The results presented here lead us to propose φ29 DNA polymerase thumb as the main subdomain responsible for the coordination of polymerization and exonuclease activities.
Collapse
Affiliation(s)
| | | | - Margarita Salas
- To whom correspondence should be addressed. Tel: +34 91 4978435; Fax: +34 91 4978490;
| | | |
Collapse
|
27
|
Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. The phi29 DNA polymerase:protein-primer structure suggests a model for the initiation to elongation transition. EMBO J 2006; 25:1335-43. [PMID: 16511564 PMCID: PMC1422159 DOI: 10.1038/sj.emboj.7601027] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 02/08/2006] [Indexed: 11/09/2022] Open
Abstract
The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage phi29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 A resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.
Collapse
Affiliation(s)
- Satwik Kamtekar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Andrea J Berman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - José M Lázaro
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Luis Blanco
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular ‘Severo Ochoa' (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Room 418, Bass Center, 266 Whitney Avenue, New Haven, CT 06520-8114, USA. Tel.: +1 203 432 5617/5619; Fax: +1 203 432 3282; E-mail:
| |
Collapse
|
28
|
Serrano-Heras G, Salas M, Bravo A. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J Biol Chem 2006; 281:7068-74. [PMID: 16421108 DOI: 10.1074/jbc.m511152200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) is an enzyme involved in the base excision repair pathway. It specifically removes uracil from both single-stranded and double-stranded DNA. The genome of the Bacillus subtilis phage 29 is a linear double-stranded DNA with a terminal protein covalently linked at each 5'-end. Replication of 29 DNA starts by a protein-priming mechanism and generates intermediates that have long stretches of single-stranded DNA. By using in vivo chemical cross-linking and affinity chromatography techniques, we found that UDG is a cellular target for the early viral protein p56. Addition of purified protein p56 to B. subtilis extracts inhibited the endogenous UDG activity. Moreover, extracts from 29-infected cells were deficient in UDG activity. We suggested that inhibition of the cellular UDG is a defense mechanism developed by 29 to prevent the action of the base excision repair pathway if uracil residues arise in their replicative intermediates. Protein p56 is the first example of a UDG inhibitor encoded by a non-uracil-containing viral DNA.
Collapse
Affiliation(s)
- Gemma Serrano-Heras
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
29
|
Albert A, Muñoz-Espín D, Jiménez M, Asensio JL, Hermoso JA, Salas M, Meijer WJJ. Structural basis for membrane anchorage of viral phi29 DNA during replication. J Biol Chem 2005; 280:42486-8. [PMID: 16275651 DOI: 10.1074/jbc.c500429200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prokaryotic DNA replication is compartmentalized at the cellular membrane. Functional and biochemical studies showed that the Bacillus subtilis phage 29-encoded membrane protein p16.7 is directly involved in the organization of membrane-associated viral DNA replication. The structure of the functional domain of p16.7 in complex with DNA, presented here, reveals the multimerization mode of the protein and provides insights in the organization of the phage genome at the membrane of the infected cell.
Collapse
Affiliation(s)
- Armando Albert
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
31
|
Truniger V, Lázaro JM, Salas M. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide. J Mol Biol 2004; 335:481-94. [PMID: 14672657 DOI: 10.1016/j.jmb.2003.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In DNA polymerases from families A and B in the closed conformation, several positively charged residues, located in pre-motif B and motif B, have been shown to interact with the phosphate groups of the incoming nucleotide at the polymerisation active site: the invariant Lys of motif B and the nearly invariant Lys of pre-motif B (family B) correspond to a His in family A DNA polymerases. In phi29 DNA polymerase, belonging to the family B DNA polymerases able to start replication by protein-priming, the corresponding residues, Lys383 and Lys371, have been shown to be dNTP-ligands. Since in several DNA polymerases a third residue has been involved in dNTP binding, we have addressed here the question if in the DNA polymerases of the protein-primed subfamily, and especially in phi29 DNA polymerase, there are more than these two residues involved in nucleotide binding. By site-directed mutagenesis in phi29 DNA polymerase the functional role of the remaining two conserved positively charged amino acid residues of pre-motif B and motif B (besides Lys371 and Lys383) has been studied. The results indicate that residue Lys379 of motif B is also involved in dNTP binding, possibly through interaction with the triphosphate moiety of the incoming nucleotide, since the affinity for nucleotides of mutant DNA polymerase K379T was reduced in DNA and TP-primed reactions. On the other hand, we propose that, when the terminal protein (TP) is present at the polymerisation active site, residue Lys366 of pre-motif B is involved in stabilising the incoming nucleotide in an appropriate position for efficient TP-deoxynucleotidylation. Although mutant DNA polymerase K366T showed a wild-type like phenotype in DNA-primed polymerisation in the presence of DNA as template, in TP-primed reactions as initiation and transition it was impaired, especially in the presence of the phi29 DBP, protein p6.
Collapse
Affiliation(s)
- Verónica Truniger
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
32
|
Dufour E, Rodríguez I, Lázaro JM, de Vega M, Salas M. A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 2003; 331:781-94. [PMID: 12909010 DOI: 10.1016/s0022-2836(03)00788-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-primed DNA polymerases form a subgroup of the eukaryotic-type DNA polymerases family, also called family B or alpha-like. A multiple amino acid sequence alignment of this subgroup of DNA polymerases led to the identification of two insertions, TPR-1 and TPR-2, in the polymerisation domain. We showed previously that Asp332 of the TPR-1 insertion of phi29 DNA polymerase is involved in the correct orientation of the terminal protein (TP) for the initiation of replication. In this work, the functional role of two other conserved residues from TPR-1, Lys305 and Tyr315, has been analysed. The four mutant derivatives constructed, K305I, K305R, Y315A and Y315F, displayed a wild-type 3'-5' exonuclease activity on single-stranded DNA. However, when assayed on double-stranded DNA such activity was higher than that of the wild-type enzyme. This activity led to a reduced pol/exo ratio, suggesting a defect in stabilising the primer terminus at the polymerase active site. On the other hand, although mutant polymerases K305I and Y315A were able to couple processive DNA polymerisation to strand displacement, they were severely impaired in phi29 TP-DNA replication. The possible role of the TPR-1 insertion in the set of interactions with the nascent chain during the first steps of TP-DNA replication is discussed.
Collapse
Affiliation(s)
- Emmanuelle Dufour
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Shelley Grimes
- Department of Oral Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
34
|
Eisenbrandt R, Lázaro JM, Salas M, de Vega M. Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein. Nucleic Acids Res 2002; 30:1379-86. [PMID: 11884636 PMCID: PMC101362 DOI: 10.1093/nar/30.6.1379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/25/2002] [Accepted: 01/25/2002] [Indexed: 11/13/2022] Open
Abstract
Phage Phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as the primer for initiation of DNA synthesis. In one of the most important motifs present in the 3'-->5' exonucleolytic domain of proofreading DNA polymerases, the ExoII motif, Phi29 DNA polymerase contains three amino acid residues, Y59, H61 and F69, which are highly conserved among most proofreading DNA polymerases. These residues have recently been shown to be involved in proper stabilization of the primer terminus at the 3'-->5' exonuclease active site. Here we investigate by means of site-directed mutagenesis the role of these three residues in reactions that are specific for DNA polymerases utilizing a protein-primed DNA replication mechanism. Mutations introduced at residues Y59, H61 and F69 severely affected the protein-primed replication capacity of Phi29 DNA polymerase. For four of the mutants, namely Y59L, H61L, H61R and F69S, interaction with the terminal protein was affected, leading to few initiation and transition products. These findings, together with the specific conservation of Y59, H61 and F69 among DNA polymerases belonging to the protein-primed subgroup, strongly suggest a functional role of these amino acid residues in the DNA polymerase-terminal protein interaction.
Collapse
Affiliation(s)
- Ralf Eisenbrandt
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Abstract
Continuous research spanning more than three decades has made the Bacillus bacteriophage phi29 a paradigm for several molecular mechanisms of general biological processes, such as DNA replication, regulation of transcription, phage morphogenesis, and phage DNA packaging. The genome of bacteriophage phi29 consists of a linear double-stranded DNA (dsDNA), which has a terminal protein (TP) covalently linked to its 5' ends. Initiation of DNA replication, carried out by a protein-primed mechanism, has been studied in detail and is considered to be a model system for the protein-primed DNA replication that is also used by most other linear genomes with a TP linked to their DNA ends, such as other phages, linear plasmids, and adenoviruses. In addition to a continuing progress in unraveling the initiation of DNA replication mechanism and the role of various proteins involved in this process, major advances have been made during the last few years, especially in our understanding of transcription regulation, the head-tail connector protein, and DNA packaging. Recent progress in all these topics is reviewed. In addition to phi29, the genomes of several other Bacillus phages consist of a linear dsDNA with a TP molecule attached to their 5' ends. These phi29-like phages can be divided into three groups. The first group includes, in addition to phi29, phages PZA, phi15, and BS32. The second group comprises B103, Nf, and M2Y, and the third group contains GA-1 as its sole member. Whereas the DNA sequences of the complete genomes of phi29 (group I) and B103 (group II) are known, only parts of the genome of GA-1 (group III) were sequenced. We have determined the complete DNA sequence of the GA-1 genome, which allowed analysis of differences and homologies between the three groups of phi29-like phages, which is included in this review.
Collapse
Affiliation(s)
- W J Meijer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|