1
|
Awender S, Wackerbauer R, Breed GA. Combining generalized modeling and specific modeling in the analysis of ecological networks. CHAOS (WOODBURY, N.Y.) 2023; 33:033130. [PMID: 37003835 DOI: 10.1063/5.0131352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
The complexity of real food webs involves uncertainty in data and in underlying ecological processes, and modeling approaches deal with these challenges differently. Generalized modeling provides a linear stability analysis without narrow specification of all processes, and conventional dynamical systems models approximate functional forms to discuss trajectories in phase space. This study compares results and ecological interpretations from both methods in four-species ecological networks at steady state. We find that a specific (dynamical systems) model only provides a subset of stability data from the generalized model, which spans many plausible dynamic scenarios, allowing for conflicting results. Nevertheless, both approaches reveal that fixed points become stable when nutrient flows to predators are fettered and even more when the basal growth rate approaches a maximum. The specific model identifies a distinct ecosystem response to bottom-up forcing, the enrichment of lower trophic levels. Enrichment stabilizes a fixed point when basal species are in a resource-deprived environment but destabilizes it if resources become more abundant. The generalized model provides less specific information since infinitely many paths of enrichment are hypothetical. Nevertheless, generalized modeling of ecological systems is a powerful technique that enables a meta analysis of these uncertain complex systems.
Collapse
Affiliation(s)
- Stefan Awender
- Department of Physics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Renate Wackerbauer
- Department of Physics, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| | - Greg A Breed
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA
| |
Collapse
|
2
|
Wilkinson C, Lim RBH, Liew JH, Kwik JTB, Tan CLY, Heok Hui T, Yeo DCJ. Empirical food webs of 12 tropical reservoirs in Singapore. Biodivers Data J 2022; 10:e86192. [PMID: 36761616 PMCID: PMC9848559 DOI: 10.3897/bdj.10.e86192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background Food webs summarise trophic interactions of the biotic components within an ecosystem, which can influence nutrient dynamics and energy flows, ultimately affecting ecosystem functions and services. Food webs represent the hypothesised trophic links between predators and prey and can be presented as empirical food webs, in which the relative strength/importance of the respective links are quantified. Some common methods used in food web research include gut content analysis (GCA) and stable isotope analysis (SIA). We combine both methods to construct empirical food web models as a basis for monitoring and studying ecosystem-level outcomes of natural (e.g. species turnover in fish assemblage) and intentional environmental change (e.g. biomanipulation). New information We present 12 food webs from tropical reservoir communities in Singapore and summarise the topology of each with widely-used network indices (e.g. connectance, link density). Each reservoir was surveyed over 4-6 sampling occasions, during which, representative animal groups (i.e. fish species and taxonomic/functional groups of zooplankton and benthic macroinvertebrates) and all likely sources of primary production (i.e. macrophytes, periphyton, phytoplankton and riparian terrestrial plants) were collected. We analysed gut content in fishes and bulk isotope (d13C and d15N) profiles of all animals (i.e. fishes and invertebrates) and plants collected. Both sets of information were used to estimate the relative strength of trophic relationships using Bayesian mixing models. We document our protocol here, alongside a script in the R programming language for executing data management/analyses/visualisation procedures used in our study. These data can be used to glean insights into trends in inter- and intra-specific or guild interactions in analogous freshwater lake habitats.
Collapse
Affiliation(s)
- Clare Wilkinson
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
| | - Rayson B H Lim
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
| | - Jia Huan Liew
- Lingnan University, Hong Kong, ChinaLingnan UniversityHong KongChina
| | - Jeffrey T B Kwik
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
| | - Claudia L Y Tan
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
| | - Tan Heok Hui
- Lee Kong Chian Natural History Museum, National University of Singapore, Kent Ridge, SingaporeLee Kong Chian Natural History Museum, National University of SingaporeKent RidgeSingapore
| | - Darren C J Yeo
- National University of Singapore, Singapore, SingaporeNational University of SingaporeSingaporeSingapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Kent Ridge, SingaporeLee Kong Chian Natural History Museum, National University of SingaporeKent RidgeSingapore
| |
Collapse
|
3
|
Morton DN, Lafferty KD. Parasites in kelp‐forest food webs increase food‐chain length, complexity, and specialization, but reduce connectance. ECOL MONOGR 2022; 92:e1506. [PMID: 35865510 PMCID: PMC9286845 DOI: 10.1002/ecm.1506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Dana N. Morton
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California USA
- Marine Science Institute University of California Santa Barbara California USA
| | - Kevin D. Lafferty
- U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|
4
|
Morton DN, Antonino CY, Broughton FJ, Dykman LN, Kuris AM, Lafferty KD. A food web including parasites for kelp forests of the Santa Barbara Channel, California. Sci Data 2021; 8:99. [PMID: 33833244 PMCID: PMC8032823 DOI: 10.1038/s41597-021-00880-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022] Open
Abstract
We built a high-resolution topological food web for the kelp forests of the Santa Barbara Channel, California, USA that includes parasites and significantly improves resolution compared to previous webs. The 1,098 nodes and 21,956 links in the web describe an economically, socially, and ecologically vital system. Nodes are broken into life-stages, with 549 free-living life-stages (492 species from 21 Phyla) and 549 parasitic life-stages (450 species from 10 Phyla). Links represent three kinds of trophic interactions, with 9,352 predator-prey links, 2,733 parasite-host links and 9,871 predator-parasite links. All decisions for including nodes and links are documented, and extensive metadata in the node list allows users to filter the node list to suit their research questions. The kelp-forest food web is more species-rich than any other published food web with parasites, and it has the largest proportion of parasites. Our food web may be used to predict how kelp forests may respond to change, will advance our understanding of parasites in ecosystems, and fosters development of theory that incorporates large networks.
Collapse
Affiliation(s)
- Dana N Morton
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA.
- Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA.
| | - Cristiana Y Antonino
- College of Creative Studies, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Farallon J Broughton
- College of Creative Studies, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Lauren N Dykman
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Armand M Kuris
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-6150, USA
- Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA
| | - Kevin D Lafferty
- Western Ecological Research Center, U.S. Geological Survey, at Marine Science Institute, University of California, Santa Barbara, CA, 93106-9610, USA
| |
Collapse
|
5
|
Bonato KO, Silva PC, Malabarba LR. Unrevealing Parasitic Trophic Interactions—A Molecular Approach for Fluid-Feeding Fishes. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Abstract
Habitat degradation can affect trophic ecology by differentially affecting specialist and generalist species, and the number and type of interspecific relationships. However, the effects of habitat degradation on the trophic ecology of coral reefs have received limited attention. We compared the trophic structure and food chain length between two shallow Caribbean coral reefs similar in size and close to each other: one dominated by live coral and the other by macroalgae (i.e., degraded). We subjected samples of basal carbon sources (particulate organic matter and algae) and the same 48 species of consumers (invertebrates and fishes) from both reefs to stable isotope analyses, and determined the trophic position of consumers and relative importance of various carbon sources for herbivores, omnivores, and carnivores. We found that both reefs had similar food chain length and trophic structure, but different trophic pathways. On the coral-dominated reef, turf algae and epiphytes were the most important carbon source for all consumer categories, whereas on the degraded reef, particulate organic matter was a major carbon source for carnivores. Our results suggest that the trophic structure of the communities associated with these reefs is robust enough to adjust to conditions of degradation.
Collapse
|
7
|
Pethybridge HR, Choy CA, Polovina JJ, Fulton EA. Improving Marine Ecosystem Models with Biochemical Tracers. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:199-228. [PMID: 29298140 DOI: 10.1146/annurev-marine-121916-063256] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.
Collapse
Affiliation(s)
- Heidi R Pethybridge
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania 7000, Australia; ,
| | - C Anela Choy
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA
- Current affiliation: Integrated Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0227, USA;
| | - Jeffrey J Polovina
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawaii 96818, USA;
| | - Elizabeth A Fulton
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania 7000, Australia; ,
| |
Collapse
|
8
|
Lafferty KD, Dobson AP, Kuris AM. Parasites dominate food web links. Proc Natl Acad Sci U S A 2006; 103:11211-6. [PMID: 16844774 PMCID: PMC1544067 DOI: 10.1073/pnas.0604755103] [Citation(s) in RCA: 455] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Indexed: 11/18/2022] Open
Abstract
Parasitism is the most common animal lifestyle, yet food webs rarely include parasites. The few earlier studies have indicated that including parasites leads to obvious increases in species richness, number of links, and food chain length. A less obvious result was that adding parasites slightly reduced connectance, a key metric considered to affect food web stability. However, reported reductions in connectance after the addition of parasites resulted from an inappropriate calculation. Two alternative corrective approaches applied to four published studies yield an opposite result: parasites increase connectance, sometimes dramatically. In addition, we find that parasites can greatly affect other food web statistics, such as nestedness (asymmetry of interactions), chain length, and linkage density. Furthermore, whereas most food webs find that top trophic levels are least vulnerable to natural enemies, the inclusion of parasites revealed that mid-trophic levels, not low trophic levels, suffered the highest vulnerability to natural enemies. These results show that food webs are very incomplete without parasites. Most notably, recognition of parasite links may have important consequences for ecosystem stability because they can increase connectance and nestedness.
Collapse
Affiliation(s)
- Kevin D Lafferty
- Western Ecological Research Center, U.S. Geological Survey, Santa Barbara, CA 93106, USA.
| | | | | |
Collapse
|
9
|
Changing Perspectives on Food Web Interactions in Lake Littoral Zones. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/978-1-4612-0695-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|