1
|
Deckmyn G, Flores O, Mayer M, Domene X, Schnepf A, Kuka K, Van Looy K, Rasse DP, Briones MJ, Barot S, Berg M, Vanguelova E, Ostonen I, Vereecken H, Suz LM, Frey B, Frossard A, Tiunov A, Frouz J, Grebenc T, Öpik M, Javaux M, Uvarov A, Vindušková O, Henning Krogh P, Franklin O, Jiménez J, Curiel Yuste J. KEYLINK: towards a more integrative soil representation for inclusion in ecosystem scale models. I. review and model concept. PeerJ 2020; 8:e9750. [PMID: 32974092 PMCID: PMC7486829 DOI: 10.7717/peerj.9750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.
Collapse
Affiliation(s)
- Gaby Deckmyn
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | - Omar Flores
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
- Biogeography and Global Change, National Museum of Natural Sciences-Spanish National Research Council (MNCN-CSIC), Madrid, Spain
| | - Mathias Mayer
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- Biogeochemistry Group, Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Xavier Domene
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Andrea Schnepf
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katrin Kuka
- Institute for Crop and Soil Science, Julius Kühn-Institut (JKI), Braunschwei, Germany
| | - Kris Van Looy
- OVAM, Flemish Institute for Materials and Soils, Mechelen, Belgium
| | - Daniel P. Rasse
- Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research (NIBIO), Aas, Norway
| | - Maria J.I. Briones
- Departamento de Ecología y Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Sébastien Barot
- Institute of Ecology and Environmental Sciences, IRD, UPEC, CNRS, INRA, Sorbonne Université, Paris, France
| | - Matty Berg
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Harry Vereecken
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Laura M. Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, London, UK
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Alexei Tiunov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Jan Frouz
- Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Javaux
- Agrosphere Institute, IBG, Forschungszentrum Jülich GmbH, Jülich, Germany
- Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alexei Uvarov
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Olga Vindušková
- Department of Biology, Plants and Ecosystems (PLECO), Universiteit Antwerpen, Antwerpen, Belgium
| | | | - Oskar Franklin
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
- International Institute for Applied Systems Analysis IIASA, Laxenburg, Austria
| | - Juan Jiménez
- Department of Biodiversity Conservation and Ecosystem Restoration, ARAID/IPE-CSIC, Jaca, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Bilbao, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Steffan SA, Chikaraishi Y, Dharampal PS, Pauli JN, Guédot C, Ohkouchi N. Unpacking brown food-webs: Animal trophic identity reflects rampant microbivory. Ecol Evol 2017; 7:3532-3541. [PMID: 28515888 PMCID: PMC5433990 DOI: 10.1002/ece3.2951] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 11/30/2022] Open
Abstract
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (=“brown”) food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs. We tested these hypotheses using isotopic (15N) analyses of amino acids extracted from wild and laboratory‐cultured consumers. Vertebrate (fish) and invertebrate detritivores (beetles and moths) were reared on detritus, with and without microbial colonization. In the field, detritivorous animal specimens were collected and analyzed to compare trophic identities among laboratory‐reared and free‐roaming detritivores. When colonized by bacteria or fungi, the trophic positions of detrital complexes increased significantly over time. The magnitude of trophic inflation was mediated by the extent of microbial consumption of detrital substrates. When detrital complexes were fed to vertebrate and invertebrate animals, the consumers registered similar degrees of trophic inflation, albeit one trophic level higher than their diets. The wild‐collected detritivore fauna in our study exhibited significantly elevated trophic positions. Our findings suggest that the trophic positions of detrital complexes rise predictably as microbes convert nonliving organic matter into living microbial biomass. Animals consuming such detrital complexes exhibit similar trophic inflation, directly attributable to the assimilation of microbe‐derived amino acids. Our data demonstrate that detritivorous microbes elevate metazoan trophic position, suggesting that detritivory among animals is, functionally, omnivory. By quantifying the impacts of microbivory on the trophic positions of detritivorous animals and then tracking how these effects propagate “up” food chains, we reveal the degree to which microbes influence consumer groups within trophic hierarchies. The trophic inflation observed among our field‐collected fauna further suggests that microbial proteins represent an immense contribution to metazoan biomass. Collectively, these findings provide an empirical basis to interpret detritivore trophic identity, and further illuminate the magnitude of microbial contributions to food webs.
Collapse
Affiliation(s)
- Shawn A Steffan
- Department of Entomology University of Wisconsin Madison WI USA.,US Department of Agriculture Agricultural Research Service Madison WI USA
| | - Yoshito Chikaraishi
- Department of Biogeochemistry Japan Agency for Marine Science & Technology Yokosuka Japan.,Institute of Low Temperature Science Hokkaido University Sapporo Japan
| | | | - Jonathan N Pauli
- Department of Forest & Wildlife Ecology University of Wisconsin Madison WI USA
| | | | - Naohiko Ohkouchi
- Department of Biogeochemistry Japan Agency for Marine Science & Technology Yokosuka Japan
| |
Collapse
|
3
|
Neher DA. Ecology of plant and free-living nematodes in natural and agricultural soil. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:371-394. [PMID: 20455699 DOI: 10.1146/annurev-phyto-073009-114439] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25-100 mum diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, to monitor environmental and restoration status, and to develop better predictive models for land-use decisions.
Collapse
Affiliation(s)
- Deborah A Neher
- Department of Plant & Soil Science, University of Vermont, Burlington, Vermont 05405, USA.
| |
Collapse
|