1
|
Lim XN, Shan C, Marzinek JK, Dong H, Ng TS, Ooi JSG, Fibriansah G, Wang J, Verma CS, Bond PJ, Shi PY, Lok SM. Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C. PLoS Pathog 2019; 15:e1007996. [PMID: 31536610 PMCID: PMC6752767 DOI: 10.1371/journal.ppat.1007996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus. DENV2 particles have been shown to change their morphologies (compact smooth to loose bumpy surfaced) when temperature is switched from 28°C to 37°C. We used two DENV2 viruses both belonging to the same strain designation but with a different passage history—one of which exhibited the smooth surfaced morphology while the other was bumpy surfaced, observed by cryoEM. We mutated residues in the E protein of the DENV2 infectious clone that has the smooth surfaced morphology to determine if any could result in a bumpy morphology. Results showed several different mutations could lead to this change. Using molecular dynamics simulations, we showed how these mutations likely destabilize the E protein dimeric interactions. We investigated whether the bumpy morphology also occurs in DENV2 clinical isolates, and showed that these viruses can exhibit both morphologies, indicating that vaccine and therapeutics development should target both virus forms.
Collapse
Affiliation(s)
- Xin-Ni Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chao Shan
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jan K. Marzinek
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Thiam Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Justin S. G. Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Texas, United States of America
- * E-mail: (PJB); (PS); (SL)
| | - Shee-mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (PJB); (PS); (SL)
| |
Collapse
|
2
|
Single-Particle Discrimination of Retroviruses from Extracellular Vesicles by Nanoscale Flow Cytometry. Sci Rep 2017; 7:17769. [PMID: 29259315 PMCID: PMC5736735 DOI: 10.1038/s41598-017-18227-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022] Open
Abstract
Retroviruses and small EVs overlap in size, buoyant densities, refractive indices and share many cell-derived surface markers making them virtually indistinguishable by standard biochemical methods. This poses a significant challenge when purifying retroviruses for downstream analyses or for phenotypic characterization studies of markers on individual virions given that EVs are a major contaminant of retroviral preparations. Nanoscale flow cytometry (NFC), also called flow virometry, is an adaptation of flow cytometry technology for the analysis of individual nanoparticles such as extracellular vesicles (EVs) and retroviruses. In this study we systematically optimized NFC parameters for the detection of retroviral particles in the range of 115–130 nm, including viral production, sample labeling, laser power and voltage settings. By using the retroviral envelope glycoprotein as a selection marker, and evaluating a number of fluorescent dyes and labeling methods, we demonstrate that it is possible to confidently distinguish retroviruses from small EVs by NFC. Our findings make it now possible to individually phenotype genetically modified retroviral particles that express a fluorescent envelope glycoprotein without removing EV contaminants from the sample.
Collapse
|
3
|
Liu X, Ouyang T, Ouyang H, Ren L. Single particle labeling of RNA virus in live cells. Virus Res 2017; 237:14-21. [PMID: 28506790 DOI: 10.1016/j.virusres.2017.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022]
Abstract
Real-time and visual tracking of viral infection is crucial for elucidating the infectious and pathogenesis mechanisms. To track the virus successfully, an efficient labeling method is necessary. In this review, we first discuss the practical labeling techniques for virus tracking in live cells. We then describe the current knowledge of interactions between RNA viruses (especially influenza viruses, immunodeficiency viruses, and Flaviviruses) and host cellular structures, obtained using single particle labeling techniques combined with real-time fluorescence microscopy. Single particle labeling provides an easy system for understanding the RNA virus life cycle.
Collapse
Affiliation(s)
- Xiaohui Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
4
|
Gan ES, Cheong WF, Chan KR, Ong EZ, Chai X, Tan HC, Ghosh S, Wenk MR, Ooi EE. Hypoxia enhances antibody-dependent dengue virus infection. EMBO J 2017; 36:1348-1363. [PMID: 28320741 PMCID: PMC5430213 DOI: 10.15252/embj.201695642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 11/23/2022] Open
Abstract
Dengue virus (DENV) has been found to replicate in lymphoid organs such as the lymph nodes, spleen, and liver in post‐mortem analysis. These organs are known to have low oxygen levels (~0.5–4.5% O2) due to the vascular anatomy. However, how physiologically low levels of oxygen affect DENV infection via hypoxia‐induced changes in the immune response remains unknown. Here, we show that monocytes adapted to 3% O2 show greater susceptibility to antibody‐dependent enhancement of DENV infection. Low oxygen level induces HIF1α‐dependent upregulation of fragment crystallizable gamma receptor IIA (FcγRIIA) as well as HIF1α‐independent alterations in membrane ether lipid concentrations. The increased FcγRIIA expression operates synergistically with altered membrane composition, possibly through increase membrane fluidity, to increase uptake of DENV immune complexes for enhanced infection. Our findings thus indicate that the increased viral burden associated with secondary DENV infection is antibody‐dependent but hypoxia‐induced and suggest a role for targeting hypoxia‐induced factors for anti‐dengue therapy.
Collapse
Affiliation(s)
- Esther Shuyi Gan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wei Fun Cheong
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eugenia Ziying Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xiaoran Chai
- Program in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore .,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore MIT Alliance Research and Technology CREATE Campus, Singapore, Singapore
| |
Collapse
|