1
|
Halverson-Kolkind KA, Caputo N, Lampi KJ, Srivastava O, David LL. Measurement of absolute abundance of crystallins in human and αA N101D transgenic mouse lenses using 15N-labeled crystallin standards. Exp Eye Res 2024; 248:110115. [PMID: 39368693 PMCID: PMC11724759 DOI: 10.1016/j.exer.2024.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Stable isotope labeled standards of all major human lens crystallins were created to measure the abundance of lens endogenous crystallins from birth to adulthood. All major human crystallins (αA, αB, βA2, βA3/A1, βA4, βB1, βB2, βB3, γA, γB, γC, γD, γS) were cloned with N-terminal 6 x His tagged SUMO for ease of purification and the ability to generate natural N-termini by SUMO protease cleavage when producing crystallins for structure/function studies. They were then expressed in 15N-enriched media, quantified by mass spectrometry, and mixed in proportions found in young human lens to act as an artificial lens standard. The absolute quantification method was tested using soluble protein from 5-day, 23-day, 18-month, and 18-year-old human lenses spiked with the 15N artificial lens standard. Proteins were trypsinized, relative ratios of light and heavy labeled peptides determined using high-resolution precursor and data independent MS2 scans, and data analysis performed using Skyline software. Crystallin abundances were measured in both human donor lenses and in transgenic mouse αA N101D cataract lenses. Technical replicates of human crystallin abundance measurements were performed with average coefficients of variation of approximately 2% across all 13 crystallins. αA crystallin comprised 27% of the soluble protein of 5-day-old lens and decreased to 16% by 18-years of age. Over this time period αB increased from 6% to 9% and the αA/αB ratio decreased from 4.5/1 to 2/1. γS-crystallin also increased nearly 2-fold from 7% to 12%, becoming the 3rd most abundant protein in adult lens, while βB1 increased from 14% to 20%, becoming the most abundant crystallin of adult lens. Minor crystallins βA2, βB3, and γA comprised only about 1% each of the newborn lens soluble protein, and their abundance dropped precipitously by adulthood. While 9 of the SUMO tagged crystallins were useful for purification of crystallins for structural studies, γA, γB, γC, and γD were resistant to cleavage by SUMO protease. The abundance of WT and N101D human αA in transgenic mouse lenses was approximately 40-fold lower than endogenous mouse αA, but the deamidation mimic human αA N101D was less soluble than human WT αA. The high content of αA and the transient abundance of βA2, βB3, and γA in young lens suggest these crystallins play a role in early lens development and growth. βB1 becoming the most abundant crystallin may result from its role in promoting higher order β-crystallin oligomerization in mature lens. The full set of human crystallin expression vectors in the Addgene repository should be a useful resource for future crystallin studies. 15N labeling of these crystallins will be useful to accurately quantify crystallins in lens anatomic regions, as well as measure the composition of insoluble light scattering crystallin aggregates. The standards will also be useful to measure the abundance of crystallins expressed in transgenic animal models.
Collapse
Affiliation(s)
- Kate A Halverson-Kolkind
- Department of Biomaterials and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Robertson Collaborative Life Sciences Building & Skourtes Tower, 2730 S Moody Ave, Portland, OR, 97239, USA.
| | - Nicholas Caputo
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Kirsten J Lampi
- Department of Biomaterials and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Robertson Collaborative Life Sciences Building & Skourtes Tower, 2730 S Moody Ave, Portland, OR, 97239, USA.
| | - Om Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Henry Peters Building, 1716 University Blvd, Birmingham, AL, 35233, USA.
| | - Larry L David
- Department of Chemical Physiology & Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
2
|
McClatchy DB, Powell SB, Yates JR. In vivo mapping of protein-protein interactions of schizophrenia risk factors generates an interconnected disease network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571320. [PMID: 38168169 PMCID: PMC10759996 DOI: 10.1101/2023.12.12.571320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Genetic analyses of Schizophrenia (SCZ) patients have identified thousands of risk factors. In silico protein-protein interaction (PPI) network analysis has provided strong evidence that disrupted PPI networks underlie SCZ pathogenesis. In this study, we performed in vivo PPI analysis of several SCZ risk factors in the rodent brain. Using endogenous antibody immunoprecipitations coupled to mass spectrometry (MS) analysis, we constructed a SCZ network comprising 1612 unique PPI with a 5% FDR. Over 90% of the PPI were novel, reflecting the lack of previous PPI MS studies in brain tissue. Our SCZ PPI network was enriched with known SCZ risk factors, which supports the hypothesis that an accumulation of disturbances in selected PPI networks underlies SCZ. We used Stable Isotope Labeling in Mammals (SILAM) to quantitate phencyclidine (PCP) perturbations in the SCZ network and found that PCP weakened most PPI but also led to some enhanced or new PPI. These findings demonstrate that quantitating PPI in perturbed biological states can reveal alterations to network biology.
Collapse
|
3
|
Gallart-Palau X, Serra A, Sze SK. System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biol 2020; 18:175. [PMID: 33234129 PMCID: PMC7687804 DOI: 10.1186/s12915-020-00914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics. Results Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes. Conclusions Together, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,University Hospital Institut Pere Mata, Reus, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain.,Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aida Serra
- IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain. .,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Gillen J, Bridgwater C, Nita-Lazar A. Approaching complexity: systems biology and ms-based techniques to address immune signaling. Expert Rev Proteomics 2020; 17:341-354. [PMID: 32552048 DOI: 10.1080/14789450.2020.1780920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Studying immune signaling has been critical for our understanding of immunology, pathogenesis, cancer, and homeostasis. To enhance the breadth of the analysis, high throughput methods have been developed to survey multiple areas simultaneously, including transcriptomics, reporter assays, and ELISAs. While these techniques have been extremely informative, mass-spectrometry-based technologies have been gaining momentum and starting to be widely used in the studies of immune signaling and systems immunology. AREAS COVERED We present established proteomic methods that have been used to address immune signaling and discuss the new mass-spectrometry- based techniques of interest to the expanding field of systems immunology. Established and new proteomic methods and their applications discussed here include post-translational modification analysis, protein quantification, secretome analysis, and interactomics. In addition, we present developments in small molecule and metabolite analysis, mass spectrometry imaging, and single cell analysis. Finally, we discuss the role of multi-omic integration in aiding leading edge investigation. EXPERT OPINION In science, available techniques enhance the breadth and depth of the studies. By incorporating proteomic techniques and their innovative use, it will be possible to expand the current studies and to address novel questions at the forefront of scientific discovery.
Collapse
Affiliation(s)
- Joseph Gillen
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Caleb Bridgwater
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) , Bethesda, MD, USA
| |
Collapse
|
5
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Smith BJ, Martins-de-Souza D, Fioramonte M. A Guide to Mass Spectrometry-Based Quantitative Proteomics. Methods Mol Biol 2019; 1916:3-39. [PMID: 30535679 DOI: 10.1007/978-1-4939-8994-2_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteomics has become an attractive science in the postgenomic era, given its capacity to identify up to thousands of molecules in a single, complex sample and quantify them in an absolute and/or relative manner. The use of these techniques enables understanding of cellular and molecular mechanisms of diseases and other biological conditions, as well as identification and screening of protein biomarkers. Here we provide a straightforward, up-to-date compilation and comparison of the main quantitation techniques used in comparative proteomics such as in vitro and in vivo stable isotope labeling and label-free techniques. Additionally, this chapter includes common methods for data acquisition in proteomics and some appropriate methods for data processing. This compilation can serve as a reference for scientists who are new to, or already familiar with, quantitative proteomics.
Collapse
Affiliation(s)
- Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Center for Neurobiology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 2018; 115:E3827-E3836. [PMID: 29610302 DOI: 10.1073/pnas.1720956115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Memory formation is believed to result from changes in synapse strength and structure. While memories may persist for the lifetime of an organism, the proteins and lipids that make up synapses undergo constant turnover with lifetimes from minutes to days. The molecular basis for memory maintenance may rely on a subset of long-lived proteins (LLPs). While it is known that LLPs exist, whether such proteins are present at synapses is unknown. We performed an unbiased screen using metabolic pulse-chase labeling in vivo in mice and in vitro in cultured neurons combined with quantitative proteomics. We identified synaptic LLPs with half-lives of several months or longer. Proteins in synaptic fractions generally exhibited longer lifetimes than proteins in cytosolic fractions. Protein turnover was sensitive to pharmacological manipulations of activity in neuronal cultures or in mice exposed to an enriched environment. We show that synapses contain LLPs that may underlie stabile long-lasting changes in synaptic structure and function.
Collapse
|
8
|
Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease. J Proteome Res 2017; 16:1014-1026. [PMID: 28052195 DOI: 10.1021/acs.jproteome.6b00938] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.
Collapse
Affiliation(s)
- Michael D Mayers
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Clara Moon
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gregory S Stupp
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis W Wolan
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Lehmann WD. A timeline of stable isotopes and mass spectrometry in the life sciences. MASS SPECTROMETRY REVIEWS 2017; 36:58-85. [PMID: 26919394 DOI: 10.1002/mas.21497] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
This review retraces the role of stable isotopes and mass spectrometry in the life sciences. The timeline is divided into four segments covering the years 1920-1950, 1950-1980, 1980-2000, and 2000 until today. For each period methodic progress and typical applications are discussed. Application of stable isotopes is driven by improvements of mass spectrometry, chromatography, and related fields in sensitivity, mass accuracy, structural specificity, complex sample handling ability, data output, and data evaluation. We currently experience the vision of omics-type analyses, that is, the comprehensive identification and quantification of a complete compound class within one or a few analytical runs. This development is driven by stable isotopes without competition by radioisotopes. In metabolic studies as classic field of isotopic tracer experiments, stable isotopes and radioisotopes were competing solutions, with stable isotopes as the long-term junior partner. Since the 1990s the number of metabolic studies with radioisotopes decreases, whereas stable isotope studies retain their slow but stable upward tendency. Unique fields of stable isotopes are metabolic tests in newborns, metabolic experiments in healthy controls, newborn screening for inborn errors, quantification of drugs and drug metabolites in doping control, natural isotope fractionation in geology, ecology, food authentication, or doping control, and more recently the field of quantitative omics-type analyses. There, cells or whole organisms are systematically labeled with stable isotopes to study proteomic differences or specific responses to stimuli or genetic manipulation. The duo of stable isotopes and mass spectrometry will probably continue to grow in the life sciences, since it delivers reference-quality quantitative data with molecular specificity, often combined with informative isotope effects. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:58-85, 2017.
Collapse
Affiliation(s)
- Wolf D Lehmann
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Percy AJ, Michaud SA, Jardim A, Sinclair NJ, Zhang S, Mohammed Y, Palmer AL, Hardie DB, Yang J, LeBlanc AM, Borchers CH. Multiplexed MRM-based assays for the quantitation of proteins in mouse plasma and heart tissue. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/14/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew J. Percy
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Sarah A. Michaud
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Armando Jardim
- Institute of Parasitology; McGill University; Montreal QC Canada
| | - Nicholas J. Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Suping Zhang
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Yassene Mohammed
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Center for Proteomics and Metabolomics; Leiden University Medical Center; ZA Leiden Netherlands
| | - Andrea L. Palmer
- MRM Proteomics; , Vancouver Island Technology Park; Victoria BC Canada
| | - Darryl B. Hardie
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Juncong Yang
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Andre M. LeBlanc
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
| | - Christoph H. Borchers
- University of Victoria-Genome British Columbia Proteomics Centre; , Vancouver Island Technology Park; Victoria BC Canada
- Department of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
11
|
Wither MJ, Hansen KC, Reisz JA. Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies. ACTA ACUST UNITED AC 2016; 86:16.4.1-16.4.20. [PMID: 27801520 DOI: 10.1002/cpps.18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent technological advances in mass spectrometry (MS) have made possible the investigation and quantification of complex mixtures of biomolecules. The exceptional sensitivity and resolving power of today's mass spectrometers allow for the detection of proteins and peptides at low femtomole quantities; however, these attributes demand high sample purity to minimize artifacts and achieve the highest degree of biomolecule identification. Tissue preparation for proteomic studies is particularly challenging due to their heterogeneity in cell type, presence of insoluble biomaterials, and wide diversity of biomolecules. The workflow described herein details sample preparation from tissues through protein extraction, proteolysis, and purification to generate peptides for MS analysis. Increased peptide resolution and a corresponding increase in protein identification is accomplished using polarity-based fractionation (C18 resin) at the peptide level. Additionally, approaches to instrument set up, including the use of nanoscale liquid chromatography and quadrupole Orbitrap MS, along with database searching, are described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Matthew J Wither
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Julie A Reisz
- Biological Mass Spectrometry Core, Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
12
|
Sethi S, Chourasia D, Parhar IS. Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci 2016; 40:607-27. [PMID: 26333406 DOI: 10.1007/s12038-015-9537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other 'omics' approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.
Collapse
Affiliation(s)
- Sumit Sethi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Selangor Darul Ehsan, Malaysia,
| | | | | |
Collapse
|
13
|
Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis. Methods Mol Biol 2016; 1410:293-304. [PMID: 26867752 DOI: 10.1007/978-1-4939-3524-6_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide.
Collapse
|
14
|
Lehmann S, Vialaret J, Combe GG, Bauchet L, Hanon O, Girard M, Gabelle A, Hirtz C. Stable Isotope Labeling by Amino acid in Vivo (SILAV): a new method to explore protein metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1917-1925. [PMID: 26411513 DOI: 10.1002/rcm.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Intravenous administration of stable isotope labeled amino acid ((13)C6-leucine) to humans recently made it possible to study the metabolism of specific biomarkers in cerebrospinal fluid (CSF) using targeted mass spectrometry (MS). This labeling approach could be of great interest for monitoring many leucine-containing peptides in parallel, using high-resolution MS. This will make it possible to quantify the rates of synthesis and clearance of a large range of proteins in humans with a view to obtaining new insights into protein metabolism processes and the pathophysiology of diseases such as Alzheimer's disease. METHODS Proteins from human lumbar and ventricular CSF samples collected at different times after intravenous (13)C6-leucine infusion were digested enzymatically with LysC/trypsin after being denatured, reduced and alkylated. Desalted tryptic peptides were fractionated using Strong Cation eXchange chromatography (SCX) and analyzed using nanoflow liquid chromatography (nano-LC) coupled to a QTOF Impact II (Bruker Daltonics) mass spectrometer. Data-dependent acquisition (DDA) mode was used to identify and quantify light and heavy (13)C6-leucine peptides. The ratios of (13)C6-leucine incorporation were calculated using the Skyline software program in order to determine the rates of appearance and clearance of proteins in the CSF. RESULTS After SCX fractionation and quadrupole time-of-flight (QTOF) analysis, 4528 peptides containing leucine were identified in five fractions prepared from 40 μL of CSF. Upon analyzing one of these fractions, 66 peptides (2.7%) corresponding to 61 individual proteins had significant and reproducible rate of (13)C6-leucine incorporation at various time points. The plots of the light-to-heavy peptide ratios showed the existence of proteins with different patterns of appearance and clearance in the CSF. CONCLUSIONS The Stable Isotope Labeling Amino acid in Vivo (SILAV) method presented here, which yields unprecedented information about protein metabolism in humans, constitutes a promising new approach which certainly holds great potential in the field of clinical proteomics.
Collapse
Affiliation(s)
- Sylvain Lehmann
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Jérôme Vialaret
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Guillaume Gras Combe
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Luc Bauchet
- Service de Neurochirurgie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, INSERM U 1051 and Université de Montpellier, Montpellier, France
| | - Olivier Hanon
- AP-HP, Hôpital Broca, Service de Gériatrie, Paris, France, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marine Girard
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| | - Audrey Gabelle
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
- Centre Mémoire de Ressources et de Recherche Languedoc-Roussillon, Département de Neurologie, CHRU de Montpellier, hôpital Gui de Chauliac, Montpellier, and Université de Montpellier, Montpellier, France
| | - Christophe Hirtz
- CHRU de Montpellier, Université de Montpellier and INSERM U1183, IRMB, Laboratoire de Biochimie Protéomique Clinique, Montpellier, France
| |
Collapse
|
15
|
McClatchy DB, Ma Y, Liu C, Stein BD, Martínez-Bartolomé S, Vasquez D, Hellberg K, Shaw RJ, Yates JR. Pulsed Azidohomoalanine Labeling in Mammals (PALM) Detects Changes in Liver-Specific LKB1 Knockout Mice. J Proteome Res 2015; 14:4815-22. [PMID: 26445171 PMCID: PMC4642245 DOI: 10.1021/acs.jproteome.5b00653] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Quantification
of proteomes by mass spectrometry has proven to
be useful to study human pathology recapitulated in cellular or animal
models of disease. Enriching and quantifying newly synthesized proteins
(NSPs) at set time points by mass spectrometry has the potential to
identify important early regulatory or expression changes associated
with disease states or perturbations. NSP can be enriched from proteomes
by employing pulsed introduction of the noncanonical amino acid, azidohomoalanine
(AHA). We demonstrate that pulsed introduction of AHA in the feed
of mice can label and identify NSP from multiple tissues. Furthermore,
we quantitate differences in new protein expression resulting from
CRE-LOX initiated knockout of LKB1 in mouse livers. Overall, the PALM
strategy allows for the first time in vivo labeling of mouse tissues
to differentiate protein synthesis rates at discrete time points.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Chemical Physiology and Molecular and Cellular Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yuanhui Ma
- Department of Chemical Physiology and Molecular and Cellular Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chao Liu
- Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences , No. 6 Kexueyuan South Road, Beijing 100190, China
| | - Benjamin D Stein
- Department of Chemical Physiology and Molecular and Cellular Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Salvador Martínez-Bartolomé
- Department of Chemical Physiology and Molecular and Cellular Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|