1
|
Ogata M, Yamanaka T, Koizumi A, Sakamoto M, Aita R, Endo H, Yachi T, Yamauchi N, Otsubo T, Ikeda K, Kato T, Park EY, Kono H, Nemoto M, Hidari KIPJ. Application of Novel Sialoglyco Particulates Enhances the Detection Sensitivity of the Equine Influenza Virus by Real-Time Reverse Transcriptase Polymerase Chain Reaction. ACS APPLIED BIO MATERIALS 2019; 2:1255-1261. [DOI: 10.1021/acsabm.8b00813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Makoto Ogata
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Ami Koizumi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Mao Sakamoto
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Rena Aita
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Hiroyuki Endo
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Takehiro Yachi
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Fukushima College, 30 Nagao, Iwaki, Fukushima 970-8034, Japan
| | - Noriko Yamauchi
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa-cho, Hitachi, Ibaraki 316-8511, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima, Japan
| | - Tatsuya Kato
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroyuki Kono
- Division of Applied Chemistry and Biochemistry, National Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido 059-1275, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan
| | - Kazuya I. P. J. Hidari
- Department of Food and Nutrition, Junior College Division, University of Aizu, 1-1 Aza-Kadota, Yahata, Ikki-machi, Aizuwakamatsu, Fukushima 965-8570, Japan
| |
Collapse
|
2
|
Cook RF, Barrandeguy M, Lee PYA, Tsai CF, Shen YH, Tsai YL, Chang HFG, Wang HTT, Balasuriya UBR. Rapid detection of equine infectious anaemia virus nucleic acid by insulated isothermal RT-PCR assay to aid diagnosis under field conditions. Equine Vet J 2018; 51:489-494. [PMID: 30353944 DOI: 10.1111/evj.13032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/24/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Control of equine infectious anaemia (EIA) currently depends on serological diagnosis of infected equids. However, recently infected equids may not produce detectable anti-EIAV antibodies up to 157 days post infection and so present a high transmission risk. Therefore, direct nucleic acid detection methods are urgently needed to improve EIAV surveillance and management programs in counties where the disease is endemic. OBJECTIVES To evaluate a field-deployable, reverse transcription-insulated isothermal PCR (RT-iiPCR) assay targeting the conserved 5' untranslated region (5' UTR)/exon 1 of the tat gene of EIAV. STUDY DESIGN The analytical and clinical performance of the newly developed EIAV RT-iiPCR was evaluated by comparison with a EIAV real-time RT-PCR (RT-qPCR) along with the AGID test. METHODS Analytical sensitivity was determined using in vitro transcribed RNA containing the target area of the 5' UTR/tat gene and samples from two EIAV-positive horses. Specificity was verified using nine common equine viruses. Clinical performance was evaluated by comparison with EIAV RT-qPCR and AGID using samples derived from 196 inapparent EIAV carrier horses. RESULTS EIAV RT-iiPCR did not react with other commonly encountered equine viruses and had equivalent sensitivity (95% detection limit of eight genome equivalents), with a concordance of 95.41% to conventional EIAV RT-qPCR. However, the RT-qPCR and RT-iiPCR had sensitivities of 43.75 and 50.00%, respectively, when compared to the AGID test. MAIN LIMITATIONS Low viral loads commonly encountered in inapparent EIAV carriers may limit the diagnostic sensitivity of RT-PCR-based tests. CONCLUSIONS Although EIAV RT-iiPCR is not sufficiently sensitive to replace the current AGID test, it can augment control efforts by identifying recently exposed or "serologically silent" equids, particularly as the latter often represent a significant transmission risk because of high viral loads. Furthermore, the relatively low cost and field-deployable design enable utilisation of EIAV RT-iiPCR even in remote regions.
Collapse
Affiliation(s)
- R F Cook
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - M Barrandeguy
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología, Argentina
| | - P-Y A Lee
- GeneReach USA, Lexington, Massachusetts, USA
| | - C-F Tsai
- GeneReach USA, Lexington, Massachusetts, USA
| | - Y-H Shen
- GeneReach USA, Lexington, Massachusetts, USA
| | - Y-L Tsai
- GeneReach USA, Lexington, Massachusetts, USA
| | - H-F G Chang
- GeneReach USA, Lexington, Massachusetts, USA
| | - H-T T Wang
- GeneReach USA, Lexington, Massachusetts, USA
| | - U B R Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
4
|
Ruggiero VJ, Benitez OJ, Tsai YL, Lee PYA, Tsai CF, Lin YC, Chang HFG, Wang HTT, Bartlett P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. J Virol Methods 2018; 259:116-121. [DOI: 10.1016/j.jviromet.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
5
|
Ambagala A, Fisher M, Goolia M, Nfon C, Furukawa-Stoffer T, Ortega Polo R, Lung O. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 2016; 64:1610-1623. [PMID: 27589902 PMCID: PMC7169878 DOI: 10.1111/tbed.12554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 12/23/2022]
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious viral disease of cloven‐hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot‐and‐mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field‐deployable assay would support local decision‐making during an FMDV outbreak. Here we report validation of a novel reverse transcription‐insulated isothermal PCR (RT‐iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT™ analyser that automatically analyses data and displays ‘+’ or ‘−’ results. The FMDV RT‐iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro‐transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross‐reactivity with viruses causing similar clinical diseases in cloven‐hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory‐based real‐time RT‐PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco™ mini transportable magnetic bead‐based, automated extraction system was used. This assay provides a potentially useful field‐deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD‐free countries or for routine diagnostics in endemic countries with less structured laboratory systems.
Collapse
Affiliation(s)
- A Ambagala
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Fisher
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Goolia
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - C Nfon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - T Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - R Ortega Polo
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - O Lung
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| |
Collapse
|
6
|
A Pan-Dengue Virus Reverse Transcription-Insulated Isothermal PCR Assay Intended for Point-of-Need Diagnosis of Dengue Virus Infection by Use of the POCKIT Nucleic Acid Analyzer. J Clin Microbiol 2016; 54:1528-1535. [PMID: 27030492 DOI: 10.1128/jcm.00225-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3' untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries.
Collapse
|
7
|
Yamanaka T, Nemoto M, Bannai H, Tsujimura K, Kondo T, Matsumura T, Gildea S, Cullinane A. Evaluation of twenty-two rapid antigen detection tests in the diagnosis of Equine Influenza caused by viruses of H3N8 subtype. Influenza Other Respir Viruses 2016; 10:127-33. [PMID: 26568369 PMCID: PMC4746556 DOI: 10.1111/irv.12358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 11/26/2022] Open
Abstract
Background Equine influenza (EI) is a highly contagious disease caused by viruses of the H3N8 subtype. The rapid diagnosis of EI is essential to reduce the disease spread. Many rapid antigen detection (RAD) tests for diagnosing human influenza are available, but their ability to diagnose EI has not been systematically evaluated. Objectives The aim of this study was to compare the performance of 22 RAD tests in the diagnosis of EI. Methods The 22 RAD tests were performed on fivefold serial dilutions of EI virus to determine their detection limits. The four most sensitive RAD tests (ImmunoAce Flu, BD Flu examan, Quick chaser Flu A, B and ESPLINE Influenza A&B‐N) were further evaluated using nasopharyngeal samples collected from experimentally infected and naturally infected horses. The results were compared to those obtained using molecular tests. Results The detection limits of the 22 RAD tests varied hugely. Even the four RAD tests showing the best sensitivity were 125‐fold less sensitive than the molecular techniques. The duration of virus detection in the experimentally infected horses was shorter using the RAD tests than using the molecular techniques. The RAD tests detected between 27% and 73% of real‐time RT‐PCR‐positive samples from naturally infected horses. Conclusions The study demonstrated the importance of choosing the right RAD tests as only three of 22 were fit for diagnosing EI. It was also indicated that even RAD tests with the highest sensitivity serve only as an adjunct to molecular tests because of the potential for false‐negative results.
Collapse
Affiliation(s)
- Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Takashi Kondo
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Tomio Matsumura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Sarah Gildea
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| | - Ann Cullinane
- Virology Unit, Irish Equine Centre, Johnstown, Naas, Co. Kildare, Ireland
| |
Collapse
|
8
|
Zhao Z, Zhang J, Xu ML, Liu ZP, Wang H, Liu M, Yu YY, Sun L, Zhang H, Wu HY. A rapidly new-typed detection of norovirus based on F 0F 1-ATPase molecular motor biosensor. BIOTECHNOL BIOPROC E 2016; 21:128-133. [PMID: 32218681 PMCID: PMC7091097 DOI: 10.1007/s12257-015-0384-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/09/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
In order to adapt port rapid detection of food borne norovirus, presently we developed a new typed detection method based on F0F1-ATPase molecular motor biosensor. A specific probe was encompassed the conservative region of norovirus and F0F1-ATPase within chromatophore was constructed as a molecular motor biosensor through the "ε-subunit antibody-streptomycin-biotin-probe" system. Norovirus was captured based on probe-RNA specific binding. Our results demonstrated that the Limit of Quantification (LOQ) is 0.005 ng/mL for NV RNA and also demonstrated that this method possesses specificity and none cross-reaction for food borne virus. What's more, the experiment used this method could be accomplished in 1 h. We detected 10 samples by using this method and the results were consistent with RT-PCR results. Overall, based on F0F1-ATPase molecular motors biosensor system we firstly established a new typed detection method for norovirus detection and demonstrated that this method is sensitive and specific and can be used in the rapid detection for food borne virus.
Collapse
Affiliation(s)
- Zhuo Zhao
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Jie Zhang
- Beijing Entry-Exit Inspection Quarantine Bureau, Beijing, 100-026 China
| | - Mei-Ling Xu
- Linyi Entry-Exit Inspection Quarantine Bureau, Linyi, 276-034 China
| | - Zhi-Peng Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Hua Wang
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Ming Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Yan-Yan Yu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Li Sun
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Hui Zhang
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection Quarantine Bureau, Tianjin, 300-308 China
| | - Hai-Yan Wu
- Weifang people’s hospital of high-tech industrial development zone, Weifang, 261-205 China
| |
Collapse
|
9
|
Wilkes RP, Kania SA, Tsai YL, Lee PYA, Chang HH, Ma LJ, Chang HFG, Wang HTT. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform. J Vet Diagn Invest 2015; 27:510-5. [PMID: 26185125 DOI: 10.1177/1040638715593597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats.
Collapse
Affiliation(s)
- Rebecca Penrose Wilkes
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Yun-Long Tsai
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Pei-Yu Alison Lee
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Hsiu-Hui Chang
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Li-Juan Ma
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Hsiao-Fen Grace Chang
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| | - Hwa-Tang Thomas Wang
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN (Wilkes, Kania)GeneReach USA, Lexington, MA (Tsai, Lee, Chang, Ma, Chang, Wang)
| |
Collapse
|
10
|
An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need. J Virol Methods 2015; 220:35-8. [PMID: 25889355 PMCID: PMC7119629 DOI: 10.1016/j.jviromet.2015.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
A CPV 2 iiPCR method for on-site detection of all circulating CPV 2 strains was developed. Analytical sensitivity and specificity of CPV 2 iiPCR method in detecting CPV 2 DNA was examined. Performance of iiPCR agreed with that of a reference qPCR in detecting CPV 2 in clinical samples. The iiPCR method could provide rapid and accurate molecular detection of CPV at points of need.
Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2.
Collapse
|