1
|
Ma SC, Cao JC, Zhang HP, Jiao Y, Zhang H, He YY, Wang YH, Yang XL, Yang AN, Tian J, Zhang MH, Yang XM, Lu GJ, Jin SJ, Jia YX, Jiang YD. Aberrant promoter methylation of multiple genes in VSMC proliferation induced by Hcy. Mol Med Rep 2017; 16:7775-7783. [PMID: 28944836 DOI: 10.3892/mmr.2017.7521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is a primary pathological event in atherosclerosis (AS), and homocysteine (Hcy) is an independent risk factor for AS. However, the underlying mechanisms are still lagging. Studies have used the combination of methylation of promoters of multiple genes to diagnose tumors, thus the aim of the current study was to investigate the role of methylation status of several genes in VSMCs treated with Hcy. CpG islands were identified in the promoters of platelet‑derived growth factor (PDGF), p53, phosphatase and tensin homologue on chromosome 10 (PTEN) and mitofusin 2 (MFN2). Hypomethylation was observed to occur in the promoter region of PDGF, hypermethylation in p53, PTEN and MFN2, and hypomethylation in two global methylation indicators, aluminium (Alu) and long interspersed nucleotide element‑1 (Line‑1). This was accompanied by an increase in the expression of PDGF, and reductions of p53, PTEN and MFN2, both in mRNA and protein levels. An elevation of S‑adenosylmethionine (SAM) and a reduction of S‑adenosylhomocysteine (SAH) and the SAM/SAH ratio were also identified. In conclusion, Hcy impacted methylation the of AS‑associated genes and global methylation status that mediate the cell proliferation, which may be a character of VSMCs treated with Hcy. The data provided evidence for mechanisms of VSMCs proliferation in AS induced by Hcy and may provide a new perspective for AS induced by Hcy.
Collapse
Affiliation(s)
- Sheng-Chao Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jian-Cheng Cao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Ping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yun Jiao
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yang-Yang He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yan-Hua Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - An-Ning Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jue Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ming-Hao Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiao-Ming Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guan-Jun Lu
- Department of Urinary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shao-Ju Jin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yue-Xia Jia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Deng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
2
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
3
|
Ibrahim-Alobaide MA, Abdelsalam AG, Alobydi H, Rasul KI, Zhang R, Srivenugopal KS. Characterization of regulatory sequences in alternative promoters of hypermethylated genes associated with tumor resistance to cisplatin. Mol Clin Oncol 2015; 3:408-414. [PMID: 25798277 DOI: 10.3892/mco.2014.468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 01/03/2023] Open
Abstract
The development of cisplatin resistance in human cancers is controlled by multiple genes and leads to therapeutic failure. Hypermethylation of specific gene promoters is a key event in clinical resistance to cisplatin. Although the usage of multiple promoters is frequent in the transcription of human genes, the role of alternative promoters and their regulatory sequences have not yet been investigated in cisplatin resistance genes. In a new approach, we hypothesized that human cancers exploit the specific transcription factor-binding sites (TFBS) and CpG islands (CGIs) located in the alternative promoters of certain genes to acquire platinum drug resistance. To provide a useful resource of regulatory elements associated with cisplatin resistance, we investigated the TFBS and CGIs in 48 alternative promoters of 14 hypermethylated cisplatin resistance genes previously reported. CGIs prone to methylation were identified in 28 alternative promoters of 11 hypermethylated genes. The majority of alternative promoters harboring CGIs (93%) were clustered in one phylogenetic subclass, whereas the ones lacking CGIs were distributed in two unrelated subclasses. Regulatory sequences, initiator and TATA-532 prevailed over TATA-8 and were found in all the promoters. B recognition element (BRE) sequences were present only in alternative promoters harboring CGIs, but CCAAT and TAACC were found in both types of alternative promoters, whereas downstream promoter element sequences were significantly less frequent. Therefore, it was hypothesized that BRE and CGI sequences co-localized in alternative promoters of cisplatin resistance genes may be used to design molecular markers for drug resistance. A more extensive knowledge of alternative promoters and their regulatory elements in clinical resistance to cisplatin is likely to usher novel avenues for sensitizing human cancers to treatment.
Collapse
Affiliation(s)
- Mohammed A Ibrahim-Alobaide
- Department of Biomedical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Abdelsalam G Abdelsalam
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar ; Department of Statistics, Faculty of Economics and Political Sciences, Cairo University, Giza 12613, Egypt
| | | | | | - Ruiwen Zhang
- Department of Pharmaceutical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences and Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|