1
|
Singh G, Dal Grande F, Martin FM, Medema MH. Breaking into nature's secret medicine cabinet: lichens - a biochemical goldmine ready for discovery. THE NEW PHYTOLOGIST 2025; 246:437-449. [PMID: 40007421 PMCID: PMC11923402 DOI: 10.1111/nph.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025]
Abstract
Secondary metabolites are a crucial source of bioactive compounds playing a key role in the development of new pharmaceuticals. Recently, biosynthetic research has benefited significantly from progress on various fronts, including reduced sequencing costs, improved genome/metabolome mining strategies, and expanding tools/databases to compare and characterize chemical diversity. Steady advances in these fields are crucial for research on non-modal organisms such as lichen-forming fungi (LFF). Although most fungi produce bioactive metabolites, biosynthetic research on LFF (c. 21% of known fungi) lags behind, primarily due to experimental challenges. However, in recent years, several such challenges have been tackled, and, in parallel, a critical foundation of genomic data and pipelines has been established to accomplish the valorization of this potential. Integrating these concurrent advances to accelerate biochemical research in LFF provides a promising opportunity for new discoveries. This review summarizes the following: recent advances in fungal and LFF omics, and chemoinformatics research; studies on LFF biosynthesis, including chemical diversity and evolutionary/phylogenetic aspects; and experimental milestones in LFF biosynthetic gene functions. At the end, we outline a vision and strategy to combine the progress in these research areas to harness the biochemical potential of LFF for pharmaceutical development.
Collapse
Affiliation(s)
- Garima Singh
- Department of BiologyUniversity of PadovaVia U. Bassi 58/B35121PadovaItaly
- Botanical GardenUniversity of PadovaVia Orto Botanico 1535123PadovaItaly
| | - Francesco Dal Grande
- Department of BiologyUniversity of PadovaVia U. Bassi 58/B35121PadovaItaly
- Botanical GardenUniversity of PadovaVia Orto Botanico 1535123PadovaItaly
| | - Francis M. Martin
- Université de Lorraine, INRAE, UMR Interactions Arbre/Micro‐organismes, Centre INRAE Grand‐Est Nancy54280ChampenouxFrance
- The National Key Laboratory of Ecological Security and Sustainable Development in the Arid Region, Northwest Institute of Eco‐Environment and ResourcesChinese Academy of Sciences730000LanzhouChina
| | - Marnix H. Medema
- Bioinformatics GroupWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
2
|
Kurbessoian T, Ahmed SA, Quan Y, de Hoog S, Stajich JE. Description of new micro-colonial fungi species Neophaeococcomyces mojavensis, Coniosporium tulheliwenetii, and Taxawa tesnikishii cultured from biological soil crusts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598762. [PMID: 38915581 PMCID: PMC11195213 DOI: 10.1101/2024.06.12.598762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Black yeasts and relatives comprise Micro-Colonial Fungi (MCFs) which are slow-growing stress-tolerant micro-eukaryotes that specialize in extreme environments. MCFs are paraphyletic and found in the Orders Chaetothyriales (Eurotiomycetes) and Dothideales (Dothidiomycetes). We have isolated and described three new MCFs species from desert biological soil crusts (BSCs) collected from two arid land regions: Joshua Tree National Park (Mojave Desert) and UC Natural Reserve at Boyd Deep Canyon (confluence of Mojave and Sonoran Deserts). BSCs are composite assemblages of cyanobacteria, eukaryotic algae, fungi, lichens, and bryophytes embedded into the surface of desert soils, providing a protective buffer against the harsh desert environment. Our work focused on one type of desert BSC, the cyanolichen crust dominated by Collema sp. Using culture-dependent protocols, three MCFs were axenically isolated from their respective samples along with the extracted DNA. Their genomes were sequenced using Illumina and Nanopore, and finally assembled and annotated using hybrid assembly approaches and established bioinformatics pipelines to conduct final taxonomic phylogenetic analysis and placement. The three species described here are unique specimen from desert BSCs, here we introduce, Neophaeococcomyces mojavensis (Chaetothyriales), Cladosporium tulheliwenetii (Dothideales), and Taxawa tesnikishii (Dothideales).
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, 92521, Riverside, CA, USA
| | - Sarah A. Ahmed
- Radboudumc/CWZ Ceter of Expertise for Mycology, Nijmegen, 6525GA Nijmegen, The Netherlands
| | - Yu Quan
- Radboudumc/CWZ Ceter of Expertise for Mycology, Nijmegen, 6525GA Nijmegen, The Netherlands
| | - Sybren de Hoog
- Radboudumc/CWZ Ceter of Expertise for Mycology, Nijmegen, 6525GA Nijmegen, The Netherlands
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, 92521, Riverside, CA, USA
| |
Collapse
|
3
|
Phytotoxic compounds from endophytic fungi. Appl Microbiol Biotechnol 2022; 106:931-950. [PMID: 35039926 DOI: 10.1007/s00253-022-11773-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Weeds represent one of the most challenging biotic factors for the agricultural sector, responsible for causing significant losses in important agricultural crops. Traditional herbicides have managed to keep weeds at bay, but overuse has resulted in negative environmental and toxicological impacts, including the increase of herbicide-resistant species. Within this context, the use of biologically derived (bio-)herbicides represents a promising solution because they are able to provide the desired phytotoxic effects while causing less toxic environmental damage. In recent years, bioactive secondary metabolites, in particular those bio-synthesized by endophytic fungi, have been shown to be promising sources of novel compounds that can be exploited in agriculture, including their use in weed control. Endophytic fungi have the ability to produce volatile and nonvolatile compounds with broad phytotoxic activity. In addition, as a result of the beneficial relationships they establish with their host plants, they are part of the colonization mechanism and can provide protection for their hosts. As such, endophytic fungi can be exploited as bioherbicides and as research tools. In this review, we cover 100 nonvolatile secondary metabolites with phytotoxic activity and more than 20 volatile organic compounds in a mixture, produced by 28 isolates of endophytic fungi from 21 host plant families, collected in 8 countries. This information can form the basis for the application of endophytic fungal compounds in weed control. KEY POINTS: • Endophytic fungi produce a wide variety of secondary metabolites with unique and complex structures. • Fungal endophytes produce volatile and nonvolatile compounds with promising phytotoxic activity. • Endophytic fungi are a promising source of useful bioherbicides.
Collapse
|
4
|
Jenssen M, Rainsford P, Juskewitz E, Andersen JH, Hansen EH, Isaksson J, Rämä T, Hansen KØ. Lulworthinone, a New Dimeric Naphthopyrone From a Marine Fungus in the Family Lulworthiaceae With Antibacterial Activity Against Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Front Microbiol 2021; 12:730740. [PMID: 34659158 PMCID: PMC8517231 DOI: 10.3389/fmicb.2021.730740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of drug-resistant bacteria is increasing rapidly in all parts of the world, and the need for new antibiotics is urgent. In our continuous search for new antimicrobial molecules from under-investigated Arctic marine microorganisms, a marine fungus belonging to the family Lulworthiaceae (Lulworthiales, Sordariomycetes, and Ascomycota) was studied. The fungus was isolated from driftwood, cultivated in liquid medium, and studied for its potential for producing antibacterial compounds. Through bioactivity-guided isolation, a novel sulfated biarylic naphtho-α-pyrone dimer was isolated, and its structure was elucidated by spectroscopic methods, including 1D and 2D NMR and HRMS. The compound, named lulworthinone (1), showed antibacterial activity against reference strains of Staphylococcus aureus and Streptococcus agalactiae, as well as several clinical MRSA isolates with MICs in the 1.56-6.25 μg/ml range. The compound also had antiproliferative activity against human melanoma, hepatocellular carcinoma, and non-malignant lung fibroblast cell lines, with IC50 values of 15.5, 27, and 32 μg/ml, respectively. Inhibition of bacterial biofilm formation was observed, but no eradication of established biofilm could be detected. No antifungal activity was observed against Candida albicans. During the isolation of 1, the compound was observed to convert into a structural isomer, 2, under acidic conditions. As 1 and 2 have high structural similarity, NMR data acquired for 2 were used to aid in the structure elucidation of 1. To the best of our knowledge, lulworthinone (1) represents the first new bioactive secondary metabolite isolated from the marine fungal order Lulworthiales.
Collapse
Affiliation(s)
- Marte Jenssen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Philip Rainsford
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Eric Juskewitz
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jeanette H. Andersen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Espen H. Hansen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Teppo Rämä
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| | - Kine Ø. Hansen
- Marbio, The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Kallingal A, Thachan Kundil V, Ayyolath A, Muringayil Joseph T, Kar Mahapatra D, Haponiuk JT, Variyar EJ. Identification of sustainable trypsin active-site inhibitors from Nigrospora sphaerica strain AVA-1. J Basic Microbiol 2021; 61:709-720. [PMID: 34228389 DOI: 10.1002/jobm.202100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Tomy Muringayil Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|
6
|
Boruta T. Uncovering the repertoire of fungal secondary metabolites: From Fleming's laboratory to the International Space Station. Bioengineered 2017. [PMID: 28632991 PMCID: PMC5972916 DOI: 10.1080/21655979.2017.1341022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungi produce a variety of secondary metabolites (SMs), low-molecular weight compounds associated with many potentially useful biologic activities. The examples of biotechnologically relevant fungal metabolites include penicillin, a β-lactam antibiotic, and lovastatin, a cholesterol-lowering drug. The discovery of pharmaceutical lead compounds within the microbial metabolic pools relies on the selection and biochemical characterization of promising strains. Not all SMs are produced under standard cultivation conditions, hence the uncovering of chemical potential of investigated strains often requires the use of induction strategies to awake the associated biosynthetic genes. Triggering the secondary metabolic pathways can be achieved through the variation of cultivation conditions and growth media composition. The alternative strategy is to use genetic engineering to activate the respective genomic segments, e.g. by the manipulation of regulators or chromatin-modifying enzymes. Recently, whole-genome sequencing of several fungi isolated from the Chernobyl accident area was reported by Singh et al. (Genome Announc 2017; 5:e01602–16). These strains were selected for exposure to microgravity at the International Space Station. Biochemical characterization of fungi cultivated under extreme conditions is likely to provide valuable insights into the adaptation mechanism associated with metabolism and, possibly, a catalog of novel molecules of potential pharmaceutical importance.
Collapse
Affiliation(s)
- Tomasz Boruta
- a Lodz University of Technology , Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering , Lodz , Poland
| |
Collapse
|
7
|
Costa TM, Tavares LBB, de Oliveira D. Fungi as a source of natural coumarins production. Appl Microbiol Biotechnol 2016; 100:6571-6584. [PMID: 27364626 DOI: 10.1007/s00253-016-7660-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature.
Collapse
Affiliation(s)
- Tania Maria Costa
- Department of Chemical Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Lorena Benathar Ballod Tavares
- Environmental Engineering Postgraduate, Regional University of Blumenau, Itoupava Seca, Blumenau, Santa Catarina, CEP 89030-080, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, CEP 88040-900, Brazil.
| |
Collapse
|
8
|
Abstract
The genome size of an organism varies from species to species. The C-value paradox enigma is a very complex puzzle with regards to vast diversity in genome sizes in eukaryotes. Here we reported the detailed genomic information of 172 fungal species among different fungal genomes and found that fungal genomes are very diverse in nature. In fungi, the diversity of genomes varies from 8.97 Mb to 177.57 Mb. The average genome sizes of Ascomycota and Basidiomycota fungi are 36.91 and 46.48 Mb respectively. But higher genome size is observed in Oomycota (74.85 Mb) species, a lineage of fungus-like eukaryotic microorganisms. The average coding genes of Oomycota species are almost doubled than that of Acomycota and Basidiomycota fungus.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
9
|
Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol 2015; 6:68. [PMID: 25709603 PMCID: PMC4321598 DOI: 10.3389/fmicb.2015.00068] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.
Collapse
Affiliation(s)
- H. Corby Kistler
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of MinnesotaSaint Paul, MN, USA
| | | |
Collapse
|