1
|
Bao Y, Luo Y, Zhai H, Lu J, Zhang M, Wang N. Long noncoding RNA MIAT regulates VSMC migration by sponging miR-326. Sci Prog 2025; 108:368504251335854. [PMID: 40233150 PMCID: PMC12035257 DOI: 10.1177/00368504251335854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
ObjectiveThe current study aimed to investigate the role of the myocardial infarction-associated transcript (MIAT)/microRNA-326 (miR-326) axis in regulating the migration of vascular smooth muscle cells (VSMCs) during the progression of atherosclerosis (AS).MethodsBioinformatic analysis of MIAT and miR-326 in two AS-related GEO datasets was performed via the online web tool GEO2R. MIAT and miR-326 expression in 46 paired plasma samples and in oxidized low-density lipoprotein (ox-LDL)-treated VSMCs was analysed via RT-qPCR. Western blot analysis was used to determine the expression of monocyte chemotactic protein 1 (MCP-1) after diverse ox-LDL treatments. The correlation between MIAT and miR-326 was analysed by Spearman correlation analysis. Transwell assays were performed to determine the changes in migration after different MIAT or miR-326 interventions. RNA-fluorescence in situ hybridization (FISH) assays were performed to determine the subcellular localization of MIAT and miR-326. The targeted binding effect between MIAT and miR-326 was confirmed via a luciferase assay.ResultsMIAT was upregulated and miR-326 was downregulated in 46 plasma samples from patients with AS compared with those from patients without AS (non-AS). A negative correlation was found between MIAT and miR-326 (r = - 0.6591, P < 0.0001). The expression of MIAT in plaque samples from advanced AS patients was markedly greater than that in plaque samples from early AS patients according to the GEO dataset GSE28829 (P < 0.0001). The expression of miR-326 in platelet samples from patients with first acute myocardial infarction (FAMI) was significantly lower than that in healthy controls (P = 0.0034). MCP-1 was upregulated in ox-LDL-treated VSMCs. MIAT knockdown by specific MIAT small interfering RNAs (siRNAs) suppressed VSMC migration. Upregulation of miR-326 by transfection of miR-326 mimics also inhibited VSMC migration. Dual luciferase assays indicated that miR-326 targets MIAT. The upregulation of MIAT increased the migration of VSMCs. However, this effect was attenuated by a miR-326 mimic.ConclusionsMIAT was upregulated and miR-326 was downregulated in AS plasma and in ox-LDL-treated VSMCs. MIAT binds to miR-326 via theoretical miRNA response elements. MIAT promoted migration by sponging miR-326 in ox-LDL-induced VMSCs. The MIAT/miR-326 axis may represent a novel therapeutic target for the treatment of AS, offering potential insights into AS progression and its clinical management.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Cell Movement/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Cells, Cultured
- Male
- Chemokine CCL2/metabolism
- Chemokine CCL2/genetics
Collapse
Affiliation(s)
- Yuxin Bao
- Fourth Department of Orthopaedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Yinzhou Luo
- Fourth Department of Orthopaedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
- Third Department of Orthopaedics, Bazhong Central Hospital, Bazhong, Sichuan, P. R. China
| | - Hanjie Zhai
- Fourth Department of Orthopaedics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, Shenyang,
P. R. China
| | - Man Zhang
- Second Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
| | - Ningning Wang
- Second Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, P. R. China
- Health Center, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, P. R. China
| |
Collapse
|
2
|
Attar S, Browning VE, Krebs M, Liu Y, Nichols EK, Tsue AF, Shechner DM, Shendure J, Lieberman JA, Schweppe DK, Akilesh S, Beliveau BJ. Efficient and highly amplified imaging of nucleic acid targets in cellular and histopathological samples with pSABER. Nat Methods 2025; 22:156-165. [PMID: 39548245 DOI: 10.1038/s41592-024-02512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate covisualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide, enabling the localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets in cultured cells and FFPE specimens. Furthermore, pSABER can achieve fivefold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.
Collapse
Affiliation(s)
- Sahar Attar
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Mary Krebs
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yuzhen Liu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ashley F Tsue
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - David M Shechner
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Joshua A Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| | - Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Ramdas P, Chande A. RNA-FISH for HIV Transcription/Localization Analysis. Methods Mol Biol 2024; 2807:31-43. [PMID: 38743219 DOI: 10.1007/978-1-0716-3862-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA fluorescence in situ hybridization (FISH) serves as a method for visualizing specific RNA molecules within cells. Its primary utility lies in the observation of messenger RNA (mRNA) molecules associated with particular genes of significance. This technique can also be applied to examine viral transcription and the localization of said transcripts within infected cells. In this context, we provide a comprehensive protocol for the detection, localization, and quantification of HIV-1 transcripts in mammalian cell lines. This encompasses the preparation of required reagents, cellular treatments, visualization, and the subsequent analysis of the data acquired. These parameters play a pivotal role in enhancing our comprehension of the molecular processes during infection, particularly at the crucial transcription phase of the viral life cycle.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
4
|
Zhang J, Wei J, Sun R, Sheng H, Yin K, Pan Y, Jimenez R, Chen S, Cui XL, Zou Z, Yue Z, Emch MJ, Hawse JR, Wang L, He HH, Xia S, Han B, He C, Huang H. A lncRNA from the FTO locus acts as a suppressor of the m 6A writer complex and p53 tumor suppression signaling. Mol Cell 2023; 83:2692-2708.e7. [PMID: 37478845 PMCID: PMC10427207 DOI: 10.1016/j.molcel.2023.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.
Collapse
Affiliation(s)
- Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China.
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Rui Sun
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kai Yin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212002, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhiying Yue
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Liguo Wang
- Department of Computation Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Hongkou District, Shanghai 200080, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Hazra R, Spector DL. Simultaneous visualization of RNA transcripts and proteins in whole-mount mouse preimplantation embryos using single-molecule fluorescence in situ hybridization and immunofluorescence microscopy. Front Cell Dev Biol 2022; 10:986261. [PMID: 36268512 PMCID: PMC9577017 DOI: 10.3389/fcell.2022.986261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Whole-mount single-molecule RNA fluorescence in situ hybridization (smRNA FISH) in combination with immunofluorescence (IF) offers great potential to study long non-coding RNAs (lncRNAs): their subcellular localization, their interactions with proteins, and their function. Here, we describe a step-by-step, optimized, and robust protocol that allows detection of multiple RNA transcripts and protein molecules in whole-mount preimplantation mouse embryos. Moreover, to simultaneously detect protein and enable RNA probe penetration for the combined IF/smRNA FISH technique, we performed IF before smRNA FISH. We removed the zona pellucida, used Triton X-100 to permeabilize the embryos, and did not use a proteinase digestion step so as to preserve the antigens. In addition, we modified the IF technique by using RNase-free reagents to prevent RNA degradation during the IF procedure. Using this modified sequential IF/smRNA FISH technique, we have simultaneously detected protein, lncRNA, and mRNA in whole-mount preimplantation embryos. This reliable and robust protocol will contribute to the developmental biology and RNA biology fields by providing information regarding 3D expression patterns of RNA transcripts and proteins, shedding light on their biological function.
Collapse
Affiliation(s)
| | - David L. Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|
6
|
Wang XJ, Chen L, Xu R, Li S, Luo GC. OUP accepted manuscript. Clin Kidney J 2022; 15:1542-1552. [PMID: 35892027 PMCID: PMC9308101 DOI: 10.1093/ckj/sfac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been implicated in the progression and development of many types of cancer by interacting with RNA, DNA and proteins, including DLEU7-AS1. However, the function of DLEU7-AS1 in renal cell cancer (RCC) remains unclear. In this study, two in silico prediction algorithms were used to discover the potential target of miR-26a-5p, which was determined to be a tumor suppressor gene, possibly DLEU7-AS1, through the downregulation of coronin-3 in RCC. Thus, we hypothesized that DLEU7-AS1 promotes RCC by silencing the miR-26a-5p/coronin-3 axis. To test our hypothesis, we confirmed that DLEU7-AS1 directly targets miR-26a-5p using the pmirGLO dual-luciferase reporter assay. Next, we observed that DLEU7-AS1 expression was markedly upregulated in RCC samples and inversely correlated with clinical prognosis and miR-26a-5p levels. Knockdown of DLEU7-AS1 significantly suppressed the growth and metastasis of RCC cells in vitro and attenuated tumor growth in vivo. Interestingly, exogenous expression of coronin-3 or miR-26a-5p inhibitor treatment almost completely rescued the DLEU7-AS1 knockdown-induced inhibitory effects on cell proliferation, migration and invasion. In conclusion, our data demonstrate that DLEU7-AS1 is an oncogene in RCC capable of regulating the growth and metastasis of RCC by silencing the miR-26a-5p/coronin-3 axis, suggesting that DLEU7-AS1 can be employed as a potential therapeutic target and prognostic biomarker for RCC.
Collapse
Affiliation(s)
- Xin-jun Wang
- Department of Urology, Zhongshan Hospital Xiamen University, School of medicine, Xiamen University, Xiamen, Fujian, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Chen
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
- Department of Urology, Zhongshan Hospital Xiamen University, School of medicine, Xiamen University, Xiamen, Fujian, China
| | - Ran Xu
- Department of Urology, Zhongshan Hospital Xiamen University, School of medicine, Xiamen University, Xiamen, Fujian, China
| | - Si Li
- Department of Urology, Zhongshan Hospital Xiamen University, School of medicine, Xiamen University, Xiamen, Fujian, China
| | | |
Collapse
|
7
|
Wang J, Shen C, Li R, Wang C, Xiao Y, Kuang Y, Lao M, Xu S, Shi M, Cai X, Liang L, Xu H. Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight 2021; 6:146757. [PMID: 34877935 PMCID: PMC8675191 DOI: 10.1172/jci.insight.146757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) play a key role in controlling synovial inflammation and joint destruction in rheumatoid arthritis (RA). The contribution of long noncoding RNAs (lncRNAs) to RA is largely unknown. Here, we show that the lncRNA LINK-A, located mainly in cytoplasm, has higher-than-normal expression in synovial tissues and FLSs from patients with RA. Synovial LINK-A expression was positively correlated with the severity of synovitis in patients with RA. LINK-A knockdown decreased migration, invasion, and expression and secretion of matrix metalloproteinases and proinflammatory cytokines in RA FLSs. Mechanistically, LINK-A controlled RA FLS inflammation and invasion through regulation of tyrosine protein kinase 6–mediated and leucine-rich repeat kinase 2–mediated HIF-1α. On the other hand, we also demonstrate that LINK-A could bind with microRNA 1262 as a sponge to control RA FLS aggression but not inflammation. Our findings suggest that increased level of LINK-A may contribute to FLS-mediated rheumatoid synovial inflammation and aggression. LINK-A might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minxi Lao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maohua Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Han Y, Wen X, Li X, Chen D, Peng L, Lai B, Huang H. Circular RNA hsa_circ_0075542 acts as a sponge for microRNA-1197 to suppress malignant characteristics and promote apoptosis in prostate cancer cells. Bioengineered 2021; 12:5620-5631. [PMID: 34515615 PMCID: PMC8806842 DOI: 10.1080/21655979.2021.1967064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numerous differentially expressed circular RNAs (circRNAs) have been identified; however, their roles have not been fully elucidated. Since dysregulated circRNAs may have clinical applications, it is vital to study their expression characteristics, function, and mechanism in prostate cancer cells. The role, regulatory mechanism, and expression of hsa_circ_0075542 were analyzed using quantitative reverse transcription polymerase chain reaction. The results indicated that the expression of hsa_circ_0075542 was downregulated in prostate tumor tissues. The functions of prostate cancer cell lines LNCaP and PC3 cells were assessed using cell counting kit-8 and transwell assays and flow cytometry analysis. The results of the functional experiments showed that overexpression of hsa_circ_0075542 suppressed cell proliferation, reduced migration and invasiveness capabilities, and promoted apoptosis. Moreover, hsa_circ_0075542 targeted the microRNA-1197 (miR-1197) homeobox C11 (HOXC11) axis by sponging miR-1197. Overexpression of miR-1197 played a tumor-promoting role. Overexpression of hsa_circ_0075542 alleviated the tumor-promoting effect of miR-1197 overexpression In conclusion, hsa_circ_0075542 suppressed malignant characteristics and promoted apoptosis in LNCaP and PC3 cells by acting as a competing endogenous RNA of miR-1197. The hsa_circ_0075542/miR-1197 axis might play a role via HOXC11.
Collapse
Affiliation(s)
- Yuefu Han
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Xingqiao Wen
- Department of Urology, Third Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Department of Health Care, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dong Chen
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Lian Peng
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Bin Lai
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Hongcai Huang
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| |
Collapse
|
9
|
Zhang P, Yu C, Yu J, Li Z, Lan HY, Zhou Q. Arid2-IR promotes NF-κB-mediated renal inflammation by targeting NLRC5 transcription. Cell Mol Life Sci 2021; 78:2387-2404. [PMID: 33090288 PMCID: PMC11072509 DOI: 10.1007/s00018-020-03659-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Increasing evidence shows that long non-coding RNAs (lncRNAs) play an important role in a variety of disorders including kidney diseases. It is well recognized that inflammation is the initial step of kidney injury and is largely mediated by nuclear factor Kappa B (NF-κB) signaling. We had previously identified lncRNA-Arid2-IR is an inflammatory lncRNA associated with NF-κB-mediated renal injury. In this study, we examined the regulatory mechanism through which Arid2-IR activates NF-κB signaling. We found that Arid2-IR was differentially expressed in response to various kidney injuries and was induced by transforming growth factor beta 1(TGF-β1). Using RNA sequencing and luciferase assays, we found that Arid2-IR regulated the activity of NF-κB signal via NLRC5-dependent mechanism. Arid2-IR masked the promoter motifs of NLRC5 to inhibit its transcription. In addition, during inflammatory response, Filamin A (Flna) was increased and functioned to trap Arid2-IR in cytoplasm, thereby preventing its nuclear translocation and inhibition of NLRC5 transcription. Thus, lncRNA Arid2-IR mediates NF-κB-driven renal inflammation via a NLRC5-dependent mechanism and targeting Arid2-IR may be a novel therapeutic strategy for inflammatory diseases in general.
Collapse
Affiliation(s)
- Puhua Zhang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chaolun Yu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan Road II, Guangzhou, 510080, Guangdong, China.
- National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
10
|
Tsitsipatis D, Gorospe M. Practical guide for circular RNA analysis: Steps, tips, and resources. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1633. [PMID: 33112505 DOI: 10.1002/wrna.1633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Recent technological advances in RNA sequencing and analysis have allowed an increasingly thorough investigation of a previously unexplored class of transcripts, circular (circ)RNAs. Accumulating evidence suggests that circRNAs have unique functions which often rely on their association with microRNAs and RNA-binding proteins. Through these interactions, circRNAs have been implicated in major cellular processes and hence in the pathophysiology of a range of diseases. Here, we provide guidelines to consider when developing studies on circRNAs, including detecting and selecting the circRNAs, identifying their binding partners and sites of interaction, modulating circRNA levels, assessing copy numbers and stoichiometry, and addressing other points unique to circRNA analysis. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Abstract
In the postgenomic era, it is clear that the human genome encodes thousands of long noncoding RNAs (lncRNAs). Along the way, RNA imaging (e.g., RNA fluorescence in situ hybridization [RNA-FISH]) has been instrumental in identifying powerful roles for lncRNAs based on their subcellular localization patterns. Here, we explore how RNA imaging technologies have shed new light on how, when, and where lncRNAs may play functional roles. Specifically, we will synthesize the underlying principles of RNA imaging techniques by exploring several landmark lncRNA imaging studies that have illuminated key insights into lncRNA biology.
Collapse
Affiliation(s)
- Arjun Raj
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder and BioFrontiers Institute, Boulder, Colorado 80303
| |
Collapse
|
12
|
Singh AK, Choudhury SR, De S, Zhang J, Kissane S, Dwivedi V, Ramanathan P, Petric M, Orsini L, Hebenstreit D, Brogna S. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 2019; 8:e41444. [PMID: 30907728 PMCID: PMC6447362 DOI: 10.7554/elife.41444] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
UPF1 is an RNA helicase that is required for nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3'UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm by a mechanism that requires its RNA helicase activity. UPF1 is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary glands and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNAs, and cells depleted of UPF1 show defects in the release of mRNAs from transcription sites and their export from the nucleus.
Collapse
Affiliation(s)
- Anand K Singh
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Sandip De
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Jie Zhang
- Life SciencesUniversity of WarwickCoventryUnited Kingdom
| | - Stephen Kissane
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Vibha Dwivedi
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Marija Petric
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Luisa Orsini
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| | | | - Saverio Brogna
- School of BiosciencesUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
13
|
Zhang X, Zhang P, Song D, Xiong S, Zhang H, Fu J, Gao F, Chen H, Zeng X. Expression profiles and characteristics of human lncRNA in normal and asthenozoospermia sperm†. Biol Reprod 2018; 100:982-993. [DOI: 10.1093/biolre/ioy253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/16/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Xiaoning Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Peng Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Suping Xiong
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | | | - Jianbo Fu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fengxin Gao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Zou Y, Xu S, Xiao Y, Qiu Q, Shi M, Wang J, Liang L, Zhan Z, Yang X, Olsen N, Zheng SG, Xu H. Long noncoding RNA LERFS negatively regulates rheumatoid synovial aggression and proliferation. J Clin Invest 2018; 128:4510-4524. [PMID: 30198906 DOI: 10.1172/jci97965] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to synovial aggression and joint destruction in rheumatoid arthritis (RA). The role of long noncoding RNAs (lncRNAs) in RA is largely unknown. Here, we identified a lncRNA, LERFS (lowly expressed in rheumatoid fibroblast-like synoviocytes), that negatively regulates the migration, invasion, and proliferation of FLSs through interaction with heterogeneous nuclear ribonucleoprotein Q (hnRNP Q). Under healthy conditions, by binding to the mRNA of RhoA, Rac1, and CDC42 - the small GTPase proteins that control the motility and proliferation of FLSs - the LERFS-hnRNP Q complex decreased the stability or translation of target mRNAs and downregulated their protein levels. But in RA FLSs, decreased LERFS levels induced a reduction of the LERFS-hnRNP Q complex, which reduced the binding of hnRNP Q to target mRNA and therefore increased the stability or translation of target mRNA. These findings suggest that a decrease in synovial LERFS may contribute to synovial aggression and joint destruction in RA and that targeting the lncRNA LERFS may have therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuyan Yang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nancy Olsen
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Cai R, Sun Y, Qimuge N, Wang G, Wang Y, Chu G, Yu T, Yang G, Pang W. Adiponectin AS lncRNA inhibits adipogenesis by transferring from nucleus to cytoplasm and attenuating Adiponectin mRNA translation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:420-432. [DOI: 10.1016/j.bbalip.2018.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
|
16
|
Zhang X, Gao F, Fu J, Zhang P, Wang Y, Zeng X. Systematic identification and characterization of long non-coding RNAs in mouse mature sperm. PLoS One 2017; 12:e0173402. [PMID: 28291811 PMCID: PMC5349675 DOI: 10.1371/journal.pone.0173402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing studies have shown that mature spermatozoa contain many transcripts including mRNAs and miRNAs. However, the expression profile of long non-coding RNAs (lncRNAs) in mammalian sperm has not been systematically investigated. Here, we used highly purified RNA to investigate lncRNA expression profiles in mouse mature sperm by stranded-specific RNA-seq. We identified 20,907 known and 4,088 novel lncRNAs transcripts, and the existence of intact lncRNAs was confirmed by RT-PCR and fluorescence in situ hybridization on two representative lncRNAs. Compared to round spermatids, 1,794 upregulated and 165 downregulated lncRNAs and 4,435 upregulated and 3,920 downregulated mRNAs were identified in sperm. Based on the "Cis and Trans" RNA-RNA interaction principle, we found 14,259 targeted coding genes of differently expressed lncRNAs. In terms of Gene ontology (GO) analysis, differentially expressed lncRNAs targeted genes mainly related to nucleic acid metabolic, protein modification, chromatin and histone modification, heterocycle compound metabolic, sperm function, spermatogenesis and other processes. In contrast, differentially expressed transcripts of mRNAs were highly enriched for protein metabolic process and RNA metabolic, spermatogenesis, sperm motility, cell cycle, chromatin organization, heterocycle and aromatic compound metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the differentially expressed lncRNAs were involved in RNA transport, mRNA surveillance pathway, PI3K-Akt signaling pathway, AMPK signaling pathway, protein processing in endoplasmic reticulum. Metabolic pathways, mRNA surveillance pathway, AMPK signaling pathway, cell cycle, RNA transport splicesome and endocytosis incorporated with the differentially expressed mRNA. Furthermore, many lncRNAs were specifically expressed in testis/sperm, and 880 lncRNAs were conserved between human and mouse. In summary, this study provides a preliminary database valuable for identifying lncRNAs critical in the late stage of spermatogenesis or important for sperm function regulation, fertilization and early embryo development.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fengxin Gao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Jianbo Fu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Peng Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Yuqing Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- * E-mail:
| |
Collapse
|
17
|
Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells. Methods Mol Biol 2016; 1402:119-134. [PMID: 26721487 DOI: 10.1007/978-1-4939-3378-5_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA fluorescence in situ hybridization (FISH), long an indispensable tool for the detection and localization of RNA, is becoming an increasingly important complement to other gene expression analysis methods. Especially important for long noncoding RNAs (lncRNAs), RNA FISH adds the ability to distinguish between primary and mature lncRNA transcripts and thus to segregate the site of synthesis from the site of action.We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple primary and mature mRNA and lncRNA gene products and RNA variants in fixed mammalian cells. The technique makes use of fluorescently pre-labeled, short DNA oligonucleotides (circa 20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in fluorescent signals that reveal clusters of RNAs or single RNA molecules as punctate spots without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the counting of single transcripts down to one copy per cell. Additionally, by using probe sets with spectrally distinct fluorophores, multiplex analysis of gene-specific RNAs, or RNA variants, can be achieved. The presented examples illustrate how this method can add temporospatial information between the transcription event and both the location and the endurance of the mature lncRNA. We also briefly discuss post-processing of images and spot counting to demonstrate the capabilities of this method for the statistical analysis of RNA molecules per cell. This information can be utilized to determine both overall gene expression levels and cell-to-cell gene expression variation.
Collapse
|
18
|
Zong X, Nakagawa S, Freier SM, Fei J, Ha T, Prasanth SG, Prasanth KV. Natural antisense RNA promotes 3' end processing and maturation of MALAT1 lncRNA. Nucleic Acids Res 2016; 44:2898-908. [PMID: 26826711 PMCID: PMC4824109 DOI: 10.1093/nar/gkw047] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/17/2016] [Indexed: 01/09/2023] Open
Abstract
The RNase P-mediated endonucleolytic cleavage plays a crucial role in the 3′ end processing and cellular accumulation of MALAT1, a nuclear-retained long noncoding RNA that promotes malignancy. The regulation of this cleavage event is largely undetermined. Here we characterize a broadly expressed natural antisense transcript at the MALAT1 locus, designated as TALAM1, that positively regulates MALAT1 levels by promoting the 3′ end cleavage and maturation of MALAT1 RNA. TALAM1 RNA preferentially localizes at the site of transcription, and also interacts with MALAT1 RNA. Depletion of TALAM1 leads to defects in the 3′ end cleavage reaction and compromises cellular accumulation of MALAT1. Conversely, overexpression of TALAM1 facilitates the cleavage reaction in trans. Interestingly, TALAM1 is also positively regulated by MALAT1 at the level of both transcription and RNA stability. Together, our data demonstrate a novel feed-forward positive regulatory loop that is established to maintain the high cellular levels of MALAT1, and also unravel the existence of sense-antisense mediated regulatory mechanism for cellular lncRNAs that display RNase P-mediated 3′ end processing.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama 351-0198, Japan
| | | | - Jingyi Fei
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Taekjip Ha
- Center for Physics of living cells, Department of Physics, University of Illinois, Urbana, IL, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana, IL 61801, USA
| | | |
Collapse
|
19
|
Abstract
Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Mohammad Q Hassan
- Department of Oral & Maxillofacial Surgery, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|