1
|
Erard M, Favard C, Lavis LD, Recher G, Rigneault H, Sage D. Back to the future - 20 years of progress and developments in photonic microscopy and biological imaging. J Cell Sci 2024; 137:jcs262344. [PMID: 39465534 DOI: 10.1242/jcs.262344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
In 2023, the ImaBio consortium (imabio-cnrs.fr), an interdisciplinary life microscopy research group at the Centre National de la Recherche Scientifique, celebrated its 20th anniversary. ImaBio contributes to the biological imaging community through organization of MiFoBio conferences, which are interdisciplinary conferences featuring lectures and hands-on workshops that attract specialists from around the world. MiFoBio conferences provide the community with an opportunity to reflect on the evolution of the field, and the 2023 event offered retrospective talks discussing the past 20 years of topics in microscopy, including imaging of multicellular assemblies, image analysis, quantification of molecular motions and interactions within cells, advancements in fluorescent labels, and laser technology for multiphoton and label-free imaging of thick biological samples. In this Perspective, we compile summaries of these presentations overviewing 20 years of advancements in a specific area of microscopy, each of which concludes with a brief look towards the future. The full presentations are available on the ImaBio YouTube channel (youtube.com/@gdrimabio5724).
Collapse
Affiliation(s)
- Marie Erard
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Université Paris-Saclay, Institut de Chimie Physique, UMR 8000 CNRS, 91405, Orsay, France
| | - Cyril Favard
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Membrane Domains and Viral Assembly, Infectious Disease Research Institute of Montpellier (IRIM), CNRS UMR 9004, Université de Montpellier, 34293 Montpellier, France
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gaëlle Recher
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), UMR CNRS 5298, Institut d'Optique Graduate School, Université de Bordeaux BioImaging and OptoFluidics Team, 33400 Talence, France
| | - Hervé Rigneault
- ImaBio consortium, GDR 2004, CNRS Ingénierie, France
- Aix Marseille Univ, CNRS, Centrale Med, Institut Fresnel, 13397 Marseille, France
| | - Daniel Sage
- Biomedical Imaging Group and Center for Imaging , Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Targeted Protein Unfolding at the Golgi Apparatus. Methods Mol Biol 2022; 2557:645-659. [PMID: 36512243 DOI: 10.1007/978-1-0716-2639-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is vital to cellular and organismal health. How the Golgi apparatus, the central protein maturation and sorting station in the cell, manages misfolded proteins to maintain proteostasis is still poorly understood. Here we present a strategy for targeted protein unfolding at the Golgi that enables studying Golgi-related protein quality control and stress-signaling pathways. Targeted protein unfolding is induced by small molecule-based chemical biology approaches-hydrophobic tagging and the use of a destabilization domain. Imaging studies allow visualizing quality control (QC) phenotypes, such as the formation of QC carriers and Golgi-to-endoplasmic reticulum trafficking, and correlating these phenotypes with other trafficking processes.
Collapse
|
3
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Bai Y, Liu Y. Illuminating Protein Phase Separation: Reviewing Aggregation-Induced Emission, Fluorescent Molecular Rotor and Solvatochromic Fluorophore based Probes. Chemistry 2021; 27:14564-14576. [PMID: 34342071 DOI: 10.1002/chem.202102344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/09/2022]
Abstract
Protein phase separation process involving protein unfolding, misfolding, condensation and aggregation etc. has been associated with numerous human degenerative diseases. The complexity in protein conformational transitions results in multi-step and multi-species biochemical pathways upon protein phase separation. Recent progresses in designing novel fluorescent probes have unraveled the enriched details of phase separated proteins and provided mechanistic insights towards disease pathology. In this review, we summarized the design and characterizations of fluorescent probes that selectively illuminate proteins at different phase separated states with a focus on aggregation-induced emission probes, fluorescent molecular rotors, and solvatochromic fluorophores. Inspired by these pioneering works, a design blueprint was proposed to further develop fluorescent probes that can potentially shed light on the unresolved protein phase separated states in the future.
Collapse
Affiliation(s)
- Yulong Bai
- Dalian Institute of Chemical Physics, Chemistry, 457 Zhongshan Road, 116023, Dalian, CHINA
| | - Yu Liu
- Chinese Academy of Sciences, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, CHINA
| |
Collapse
|
5
|
Woitok M, Grieger E, Akinrinmade OA, Bethke S, Pham AT, Stein C, Fendel R, Fischer R, Barth S, Niesen J. Using the SNAP-Tag technology to easily measure and demonstrate apoptotic changes in cancer and blood cells with different dyes. PLoS One 2020; 15:e0243286. [PMID: 33270761 PMCID: PMC7714129 DOI: 10.1371/journal.pone.0243286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
In vitro and ex vivo development of novel therapeutic agents requires reliable and accurate analyses of the cell conditions they were preclinical tested for, such as apoptosis. The detection of apoptotic cells by annexin V (AV) coupled to fluorophores has often shown limitations in the choice of the dye due to interference with other fluorescent-labeled cell markers. The SNAP-tag technology is an easy, rapid and versatile method for functionalization of proteins and was therefore used for labeling AV with various fluorophores. We generated the fusion protein AV-SNAP and analyzed its capacity for the specific display of apoptotic cells in various assays with therapeutic agents. AV-SNAP showed an efficient coupling reaction with five different fluorescent dyes. Two selected fluorophores were tested with suspension, adherent and peripheral blood cells, treated by heat-shock or apoptosis-inducing therapeutic agents. Flow cytometry analysis of apoptotic cells revealed a strong visualization using AV-SNAP coupled to these two fluorophores exemplary, which was comparable to a commercial AV-Assay-kit. The combination of the apoptosis-specific binding protein AV with the SNAP-tag provides a novel solid method to facilitate protein labeling using several, easy to change, fluorescent dyes at once. It avoids high costs and allows an ordinary exchange of dyes and easier use of other fluorescent-labeled cell markers, which is of high interest for the preclinical testing of therapeutic agents in e.g. cancer research.
Collapse
Affiliation(s)
- Mira Woitok
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Elena Grieger
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Olusiji A. Akinrinmade
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Anh Tuan Pham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center, Hamburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8:52355. [PMID: 31855180 PMCID: PMC6977972 DOI: 10.7554/elife.52355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell’s high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins’ motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
7
|
Lacy MM, Baddeley D, Berro J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. eLife 2019; 8. [PMID: 31855180 DOI: 10.1101/617746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/18/2019] [Indexed: 05/20/2023] Open
Abstract
Actin dynamics generate forces to deform the membrane and overcome the cell's high turgor pressure during clathrin-mediated endocytosis (CME) in yeast, but precise molecular details are still unresolved. Our previous models predicted that actin filaments of the endocytic meshwork continually polymerize and disassemble, turning over multiple times during an endocytic event, similar to other actin systems. We applied single-molecule speckle tracking in live fission yeast to directly measure molecular turnover within CME sites for the first time. In contrast with the overall ~20 s lifetimes of actin and actin-associated proteins in endocytic patches, we detected single-molecule residence times around 1 to 2 s, and similarly high turnover rates of membrane-associated proteins in CME. Furthermore, we find heterogeneous behaviors in many proteins' motions. These results indicate that endocytic proteins turn over up to five times during the formation of an endocytic vesicle, and suggest revising quantitative models of force production.
Collapse
Affiliation(s)
- Michael M Lacy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
- Nanobiology Institute, Yale University, West Haven, United States
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
8
|
Monitoring Nicotinamide Adenine Dinucleotide and its phosphorylated redox metabolism using genetically encoded fluorescent biosensors. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Zhou S, Metcalf KJ, Bugga P, Grant J, Mrksich M. Photoactivatable Reaction for Covalent Nanoscale Patterning of Multiple Proteins. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40452-40459. [PMID: 30379516 PMCID: PMC6640637 DOI: 10.1021/acsami.8b16736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article describes a photochemical approach for independently patterning multiple proteins to an inert substrate, particularly for studies of cell adhesion. A photoactivatable chloropyrimidine ligand was employed for covalent immobilization of SnapTag fusion proteins on self-assembled monolayers of alkanethiolates on gold. A two-step procedure was used: first, patterned UV illumination of the surface activated protein capture ligands, and second, incubation with a SnapTag fusion protein bound to the surface in illuminated regions. Two different fluorescent proteins were patterned in registry with features of 400 nm in size over a 1 mm2 area. An example is given wherein an anti-carcinoembryonic antigen (anti-CEA) scFv antibody was patterned to direct the selective attachment of a human cancer cell line that express the CEA antigen. This method enables the preparation of surfaces with control over the density and activity of independently patterned proteins.
Collapse
Affiliation(s)
- Shengwang Zhou
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Kevin J. Metcalf
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Pradeep Bugga
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer Grant
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, People’s
Republic of China
- Department of Biomedical Engineering,
Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- Department of Chemistry, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Grant J, Modica JA, Roll J, Perkovich P, Mrksich M. An Immobilized Enzyme Reactor for Spatiotemporal Control over Reaction Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800923. [PMID: 29971942 DOI: 10.1002/smll.201800923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/07/2018] [Indexed: 05/19/2023]
Abstract
This paper describes a microfluidic chip wherein the position and order of two immobilized enzymes affects the type and quantity of reaction products in the flowing fluid. Assembly of the chip is based on a self-assembled monolayer presenting two orthogonal covalent capture ligands that immobilize their respective fusion enzyme. A thiol-tagged substrate is flowed over a region presenting the first enzyme-which generates a product that is efficiently transferred to the second enzyme-and the second enzyme's product binds to an adjacent thiol capture site on the chip. The amount of the three possible reaction products is quantified directly on the chip using self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry, revealing that the same microsystem can be spatiotemporally arranged to produce different products depending on the device design. This work allows for optimizing multistep biochemical transformations in favor of a desired product using a facile reaction and analytical format.
Collapse
Affiliation(s)
- Jennifer Grant
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Juliet Roll
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Paul Perkovich
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
11
|
Abstract
Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.
Collapse
Affiliation(s)
- Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, D-64295 Darmstadt, Germany
| |
Collapse
|
12
|
Multiplexed imaging of intracellular protein networks. Cytometry A 2016; 89:761-75. [DOI: 10.1002/cyto.a.22876] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
|
13
|
Cassona CP, Pereira F, Serrano M, Henriques AO. A Fluorescent Reporter for Single Cell Analysis of Gene Expression in Clostridium difficile. Methods Mol Biol 2016; 1476:69-90. [PMID: 27507334 DOI: 10.1007/978-1-4939-6361-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Genetically identical cells growing under homogeneous growth conditions often display cell-cell variation in gene expression. This variation stems from noise in gene expression and can be adaptive allowing for division of labor and bet-hedging strategies. In particular, for bacterial pathogens, the expression of phenotypes related to virulence can show cell-cell variation. Therefore, understanding virulence-related gene expression requires knowledge of gene expression patterns at the single cell level. We describe protocols for the use of fluorescence reporters for single cell analysis of gene expression in the human enteric pathogen Clostridium difficile, a strict anaerobe. The reporters are based on modified versions of the human DNA repair enzyme O ( 6)-alkylguanine-DNA alkyltransferase, called SNAP-tag and CLIP-tag. SNAP becomes covalently labeled upon reaction with O ( 6)-benzylguanine conjugated to a fluorophore, whereas CLIP is labeled by O ( 6)-benzylcytosine conjugates. SNAP and CLIP labeling is orthogonal allowing for dual labeling in the same cells. SNAP and CLIP cassettes optimized for C. difficile can be used for quantitative studies of gene expression at the single cell level. Both the SNAP and CLIP reporters can also be used for studies of protein subcellular localization in C. difficile.
Collapse
Affiliation(s)
- Carolina Piçarra Cassona
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Fátima Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal.
| |
Collapse
|