1
|
Liu J, Guo Z, Li W, Zhang X, Liang C, Cui Z. Packaging Quantum Dots in Viral Particles via a Strep-tag II/Streptavidin System for Single-Virus Tracking. NANO LETTERS 2024; 24:2821-2830. [PMID: 38407052 DOI: 10.1021/acs.nanolett.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Single-virus tracking provides a powerful tool for studying virus infection with high spatiotemporal resolution. Quantum dots (QDs) are used to label and track viral particles due to their brightness and photostability. However, labeling viral particles with QDs is not easy. We developed a new method for labeling viral particles with QDs by using the Strep-tag II/streptavidin system. In this method, QDs were site-specifically ligated to viral proteins in live cells and then packaged into viral-like particles (VLPs) of tick-borne encephalitis virus (TBEV) and Ebola virus during viral assembly. With TBEV VLP-QDs, we tracked the clathrin-mediated endocytic entry of TBEV and studied its intracellular dynamics at the single-particle level. Our Strep-tag II/streptavidin labeling procedure eliminates the need for BirA protein expression or biotin addition, providing a simple and general method for site-specifically labeling viral particles with QDs for single-virus tracking.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Cuiqin Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Christ HA, Daniel NP, Solarczek J, Fresenborg LS, Schallmey A, Menzel H. Application of electrospun chitosan-based nanofibers as immobilization matrix for biomolecules. Appl Microbiol Biotechnol 2023; 107:7071-7087. [PMID: 37755509 PMCID: PMC10638201 DOI: 10.1007/s00253-023-12777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Nanofiber meshes from electrospun chitosan, highly modified with biotin and arylazides, are well-suited for application as enzyme immobilization matrices. To test this, catalytically active biomolecules were immobilized onto photocrosslinked nanofibrous nonwovens consisting mainly of biotinylated fungal chitosan and a small amount (10 w%) of poly ethylene oxide. In this study, we show that over 10 μg eugenol oxidase per milligram dry polymer matrix can be loaded on UV-crosslinked chitosan nanofibers. We further demonstrate that bound enzyme activity can be fully retained for over 7 days of storage at ambient conditions in aqueous buffer. Samples loaded at maximum enzyme carrying capacity were tested in a custom-made plug-flow reactor system with online UV-VIS spectroscopy for activity determination. High wettability and durability of the hydrophilic chitosan support matrix enabled continuous oxidation of model substrate vanillyl alcohol into vanillin with constant turnover at flow rates of up to 0.24 L/h for over 6 h. This proves the above hypothesis and enables further application of the fibers as stacked microfluidic membranes, biosensors, or structural starting points for affinity crosslinked enzyme gels. KEY POINTS: • Biotinylated chitosan-based nanofibers retain enzymes via mild affinity interactions • Immobilized eugenol oxidase shows high activity and resists continuous washing • Nanofiber matrix material tolerated high flow rates in a continuous-flow setup.
Collapse
Affiliation(s)
- Henrik-Alexander Christ
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106, Braunschweig, Germany
| | - Nils Peter Daniel
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Jennifer Solarczek
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Leonard Sebastian Fresenborg
- Department of Molecular Cell Biology of Plants, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Braunschweig University of Technology, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Henning Menzel
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
3
|
Zhu Y, Odenkirk MT, Qiao P, Zhang T, Schrecke S, Zhou M, Marty MT, Baker ES, Laganowsky A. Combining native mass spectrometry and lipidomics to uncover specific membrane protein-lipid interactions from natural lipid sources. Chem Sci 2023; 14:8570-8582. [PMID: 37593000 PMCID: PMC10430552 DOI: 10.1039/d3sc01482g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
While it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts. When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes. Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified membrane proteins but also identify lipids that may be important for membrane protein structure and function.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Pei Qiao
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine Houston TX 77030 USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona Tucson AZ 85721 USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina Chapel Hill NC 27514 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
4
|
Yu F, Zhu AC, Liu S, Gao B, Wang Y, Khudaverdyan N, Yu C, Wu Q, Jiang Y, Song J, Jin L, He C, Qian Z. RBM33 is a unique m 6A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity. Mol Cell 2023; 83:2003-2019.e6. [PMID: 37257451 PMCID: PMC10330838 DOI: 10.1016/j.molcel.2023.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Regulation of RNA substrate selectivity of m6A demethylase ALKBH5 remains elusive. Here, we identify RNA-binding motif protein 33 (RBM33) as a previously unrecognized m6A-binding protein that plays a critical role in ALKBH5-mediated mRNA m6A demethylation of a subset of mRNA transcripts by forming a complex with ALKBH5. RBM33 recruits ALKBH5 to its m6A-marked substrate and activates ALKBH5 demethylase activity through the removal of its SUMOylation. We further demonstrate that RBM33 is critical for the tumorigenesis of head-neck squamous cell carcinoma (HNSCC). RBM33 promotes autophagy by recruiting ALKBH5 to demethylate and stabilize DDIT4 mRNA, which is responsible for the oncogenic function of RBM33 in HNSCC cells. Altogether, our study uncovers the mechanism of selectively demethylate m6A methylation of a subset of transcripts during tumorigenesis that may explain demethylation selectivity in other cellular processes, and we showed its importance in the maintenance of tumorigenesis of HNSCC.
Collapse
Affiliation(s)
- Fang Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Allen C Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Shun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boyang Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Yuzhi Wang
- Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Chunjie Yu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Qiong Wu
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Yunhan Jiang
- Department of Molecular Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Lingtao Jin
- Department of Molecular Medicine, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Zhijian Qian
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Yang L, Cui L, Ma S, Zuo Q, Huang Q. A Gene Transfer-Positive Cell Sorting System Utilizing Membrane-Anchoring Affinity Tag. Front Bioeng Biotechnol 2022; 10:930966. [PMID: 35782508 PMCID: PMC9244562 DOI: 10.3389/fbioe.2022.930966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Gene delivery efficiency is an essential limit factor in gene study and gene therapy, especially for cells that are hard for gene transfer. Here we develop an affinity cell sorting system that allows efficient enrichment of gene transfer-positive cells. The system expresses an enhanced green fluorescent protein (EGFP) fused with an N-terminal high-affinity Twin-Strep-Tag (TST) that will be anchored to the cell membrane at the out-surface through a glycosylphosphatidylinositol (GPI) membrane-anchoring structure. The EGFP permits microscopy and flow cytometry analysis of the gene transfer-positive cells, and the TST tag at the N terminal of EGFP allows efficient affinity sorting of the positive cells using Strep-Tactin magnetic beads. The cell sorting system enables efficient isolation of gene transfer-positive cells in a simple, convenient, and fast manner. Cell sorting on transfected K-562 cells resulted in a final positive cell percentage of up to 95.0% with a positive cell enrichment fold of 5.8 times. The applications in gene overexpression experiments could dramatically increase the gene overexpression fold from 10 times to 58 times, and in shRNA gene knockdown experiments, cell sorting increased the gene knockdown efficiency from 12% to 53%. In addition, cell sorting in CRISPR/Cas9 genome editing experiments allowed more significant gene modification, with an editing percentage increasing from 20% to 79%. The gene transfer-positive cell sorting system holds great potential for all gene transfer studies, especially on those hard-to-transfect cells.
Collapse
|
6
|
Schmidt TGM, Eichinger A, Schneider M, Bonet L, Carl U, Karthaus D, Theobald I, Skerra A. The Role of Changing Loop Conformations in Streptavidin Versions Engineered for High-affinity Binding of the Strep-tag II Peptide. J Mol Biol 2021; 433:166893. [PMID: 33639211 DOI: 10.1016/j.jmb.2021.166893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The affinity system based on the artificial peptide ligand Strep-tag® II and engineered tetrameric streptavidin, known as Strep-Tactin®, offers attractive applications for the study of recombinant proteins, from detection and purification to functional immobilization. To further improve binding of the Strep-tag II to streptavidin we have subjected two protruding loops that shape its ligand pocket for the peptide - instead of D-biotin recognized by the natural protein - to iterative random mutagenesis. Sequence analyses of hits from functional screening assays revealed several unexpected structural motifs, such as a disulfide bridge at the base of one loop, replacement of the crucial residue Trp120 by Gly and a two-residue deletion in the second loop. The mutant m1-9 (dubbed Strep-Tactin XT) showed strongly enhanced affinity towards the Strep-tag II, which was further boosted in case of the bivalent Twin-Strep-tag®. Four representative streptavidin mutants were crystallized in complex with the Strep-tag II peptide and their X-ray structures were solved at high resolutions. In addition, the crystal structure of the complex between Strep-Tactin XT and the Twin-Strep-tag was elucidated, indicating a bivalent mode of binding and explaining the experimentally observed avidity effect. Our study illustrates the structural plasticity of streptavidin as a scaffold for ligand binding and reveals interaction modes that would have been difficult to predict. As result, Strep-Tactin XT offers a convenient reagent for the kinetically stable immobilization of recombinant proteins fused with the Twin-Strep-tag. The possibility of reversibly dissociating such complexes simply with D-biotin as a competing ligand enables functional studies in protein science as well as cell biology.
Collapse
Affiliation(s)
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Markus Schneider
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Lidia Bonet
- IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Göttingen, Germany
| | - Uwe Carl
- IBA GmbH, Rudolf-Wissell-Str. 28, 37079 Göttingen, Germany
| | | | - Ina Theobald
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
7
|
Edowik Y, Caspari T, Williams HM. The Amino Acid Changes T55A, A273P and R277C in the Beta-Lactamase CTX-M-14 Render E. coli Resistant to the Antibiotic Nitrofurantoin, a First-Line Treatment of Urinary Tract Infections. Microorganisms 2020; 8:microorganisms8121983. [PMID: 33322113 PMCID: PMC7763680 DOI: 10.3390/microorganisms8121983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022] Open
Abstract
The antibiotic nitrofurantoin is a furan flanked by a nitro group and a hydantoin ring. It is used to treat lower urinary tract infections (UTIs) that have a lifetime incidence of 50−60% in adult women. UTIs are typically caused by uropathogenic Escherichia coli (UPEC), which are increasingly expressing extended-spectrum beta-lactamases (ESBL), rendering them multi-drug resistant. Nitrofurantoin is a first-line treatment for gram-negative ESBL-positive UTI patients, given that resistance to it is still rare (0% to 4.4%). Multiplex PCR of β-lactamase genes of the blaCTX-M groups 1, 2, 9 and 8/25 from ESBL-positive UTI patients treated at three referral hospitals in North Wales (UK) revealed the presence of a novel CTX-M-14-like gene harbouring the missense mutations T55A, A273P and R277C. While R277 is close to the active site, T55 and A273 are both located in external loops. Recombinant expression of CTX-M-14 and the mutated CTX-M-14 in the periplasm of E. coli revealed a significant increase in the Minimum Inhibitory Concentration (MIC) for nitrofurantoin from ≥6 μg/mL (CTX-M-14) to ≥512 μg/mL (mutated CTX-M-14). Consistent with this finding, the mutated CTX-M protein hydrolysed nitrofurantoin in a cell-free assay. Detection of a novel nitrofurantoin resistance gene indicates an emerging clinical problem in the treatment of gram-negative ESBL-positive UTI patients.
Collapse
Affiliation(s)
- Yasir Edowik
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
| | - Thomas Caspari
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence: (T.C.); (H.M.W.)
| | - Hugh Merfyn Williams
- School of Medical Sciences, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd, Wales LL57 2AS, UK;
- Correspondence: (T.C.); (H.M.W.)
| |
Collapse
|
8
|
Expression and Purification of Microtubule-Associated Proteins from HEK293T Cells for In Vitro Reconstitution. Methods Mol Biol 2019. [PMID: 31879895 DOI: 10.1007/978-1-0716-0219-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
In vitro reconstitution has been an invaluable tool to elucidate the roles and mechanisms of microtubule-associated proteins (MAPs). Like all biochemical assays, the quality of the proteins is vital for success. In the microtubule field, proteins produced in bacteria and insect cells have been widely used for in vitro reconstitution. Recently, we applied the mammalian HEK293T cell expression system to our research on several MAPs. We find that such system is especially suitable for quick functional studies and can produce active proteins that sometimes are difficult for either bacteria or insect cell expression systems. Here, we provide a detailed protocol to express and purify microtubule-associated proteins from HEK293T cells using a Strep-tag strategy. The method described here can be adopted for preparation of other proteins and protein complexes for reconstitution studies.
Collapse
|
9
|
Liu C, Knudsen GM, Pedley AM, He J, Johnson JL, Yaron TM, Cantley LC, Benkovic SJ. Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation. J Proteome Res 2019; 18:2078-2087. [PMID: 30964683 DOI: 10.1021/acs.jproteome.8b00969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry , University of California San Francisco Mass Spectrometry Facility , San Francisco , California 94158 , United States
| | - Anthony M Pedley
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jingxuan He
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | | | | | - Lewis C Cantley
- Department of Medicine , Beth Israel Deaconess Medical Center , Boston , Massachusetts 02115 , United States.,Department of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Stephen J Benkovic
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
10
|
Abd Elhameed HAH, Hajdu B, Balogh RK, Hermann E, Hunyadi-Gulyás É, Gyurcsik B. Purification of proteins with native terminal sequences using a Ni(II)-cleavable C-terminal hexahistidine affinity tag. Protein Expr Purif 2019; 159:53-59. [PMID: 30905870 DOI: 10.1016/j.pep.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
The role of the termini of protein sequences is often perturbed by remnant amino acids after the specific protease cleavage of the affinity tags and/or by the amino acids encoded by the plasmid at/around the restriction enzyme sites used to insert the genes. Here we describe a method for affinity purification of a metallonuclease with its precisely determined native termini. First, the gene encoding the target protein is inserted into a newly designed cloning site, which contains two self-eliminating BsmBI restriction enzyme sites. As a consequence, the engineered DNA code of Ni(II)-sensitive Ser-X-His-X motif is fused to the 3'-end of the inserted gene followed by the gene of an affinity tag for protein purification purpose. The C-terminal segment starting from Ser mentioned above is cleaved off from purified protein by a Ni(II)-induced protease-like action. The success of the purification and cleavage was confirmed by gel electrophoresis and mass spectrometry, while structural integrity of the purified protein was checked by circular dichroism spectroscopy. Our new protein expression DNA construct is an advantageous tool for protein purification, when the complete removal of affinity or other tags, without any remaining amino acid residue is essential. The described procedure can easily be generalized and combined with various affinity tags at the C-terminus for chromatographic applications.
Collapse
Affiliation(s)
- Heba A H Abd Elhameed
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Enikő Hermann
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| |
Collapse
|
11
|
Wu SC, Wang C, Chin J, Wong SL. A bio-coupling approach using a dextran-binding domain to immobilize an engineered streptavidin to Sephadex for easy preparation of affinity matrix. Sci Rep 2019; 9:3359. [PMID: 30833609 PMCID: PMC6399347 DOI: 10.1038/s41598-019-40044-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022] Open
Abstract
An engineered streptavidin, SAVSBPM18 with reversible biotin binding capability, has been successfully applied to purify biotinylated and streptavidin-binding peptide (SBP) tagged proteins. To simplify the preparation for the SAVSBPM18 affinity matrix without chemical conjugation, two bio-coupling approaches were developed based on a 14-kDa dextran-binding domain (DBD) from a Leuconostoc mesenteroides dextransucrase. The first approach offers simplicity for bio-coupling by creating a direct fusion, SAVSBPM18-Linker-DBD. Purification of the fusion from crude extract and its immobilization to Sephadex can be consolidated in one-step. The second approach aims at flexibility. A SnoopCatcher (SC) was fused to DBD to create SC-Linker-DBD. This fusion can covalently capture any recombinant proteins tagged with a SnoopTag (ST) including SAVSBPM18-Linker-ST via the formation of an isopeptide bond at the interface through the SnoopCatcher-SnoopTag interaction. Although monomeric DBD binds to dextran with nanomolar affinity, DBD tetramerized via streptavidin (SAVSBPM18-Linker-ST·SC-Linker-DBD) showed an even tighter binding to Sephadex. The majority of the fluorescently labelled DBD tetramers were retained on the Sephadex surface even after four months. Affinity columns generated using either approach effectively purified both SBP-tagged and biotinylated proteins. These columns are reusable and functional even after a year of frequent use.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.,Biology Program, Faculty of Arts & Science, Ambrose University, 150 Ambrose Circle SW, Calgary, Alberta, T3H 0L5, Canada
| | - Jonathan Chin
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Rölle A, Meyer M, Calderazzo S, Jäger D, Momburg F. Distinct HLA-E Peptide Complexes Modify Antibody-Driven Effector Functions of Adaptive NK Cells. Cell Rep 2018; 24:1967-1976.e4. [PMID: 30134159 DOI: 10.1016/j.celrep.2018.07.069] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022] Open
Abstract
Adaptive NK cells are characterized by profound alterations in multiple signaling molecules, transcription factors, and epigenetic modifications compared with canonical NK cells. Although their existence is associated with prior exposure to human cytomegalovirus (HCMV), key questions regarding their regulation and function remain. A large proportion of adaptive NK cells express the activating receptor CD94/NKG2C, binding to human leukocyte antigen E (HLA-E), that presents a limited set of peptides. We show that adaptive NK cells discriminate differences between HLA-E-peptide complexes with exquisite specificity. Prolonged exposure to an environment displaying the HLA-E peptide ligand VMAPRTLFL, derived from the leader sequence of HLA-G, enriched adaptive NK cells with low FcεRγ expression, upregulated CD25 expression, increased proliferative activity, and resulted in elevated antibody-dependent cellular cytotoxicity and IFN-γ responses compared with other HLA-E peptide complexes. Our study demonstrates that recognition of alterations in the HLA-E ligandome via an activating receptor can influence heterologous effector mechanisms and proliferation in adaptive NK cells.
Collapse
Affiliation(s)
- Alexander Rölle
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany.
| | - Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| | - Silvia Calderazzo
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group (D121), German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit "Applied Tumor Immunity" (D120), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
13
|
Bruce VJ, McNaughton BR. Evaluation of Nanobody Conjugates and Protein Fusions as Bioanalytical Reagents. Anal Chem 2017; 89:3819-3823. [PMID: 28316235 DOI: 10.1021/acs.analchem.7b00470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and Western blot are common bioanalytical techniques. Successful execution traditionally requires the use of one or more commercially available antibody-small-molecule dyes or antibody-reporter protein conjugates that recognize relatively short peptide tags (<15 amino acids). However, the size of antibodies and their molecular complexity (by virtue of post-translational disulfide formation and glycosylation) typically require either expression in mammalian cells or purification from immunized mammals. The preparation and purification of chemical dye- or reporter protein-antibody conjugates is often complicated and expensive and not commonplace in academic laboratories. In response, researchers have developed comparatively simpler protein scaffolds for macromolecular recognition, which can be expressed with relative ease in E. coli and can be evolved to bind virtually any target. Nanobodies, a minimalist scaffold generated from camelid-derived heavy-chain IgGs, are one such example. A multitude of nanobodies have been evolved to recognize a diverse array of targets, including a short peptide. Here, this peptide tag (termed BC2T) and BC2 nanobody-dye conjugates or reporter protein fusions are evaluated in ELISA, flow cytometry, and Western blot experiments and compared to analogous experiments using commercially available antibody-conjugate/peptide tag pairs. Collectively, the utility and practicality of nanobody-based reagents in bioanalytical chemistry is demonstrated.
Collapse
Affiliation(s)
- Virginia J Bruce
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Brian R McNaughton
- Department of Chemistry and ‡Department of Biochemistry & Molecular Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
Yeliseev A, Zoubak L, Schmidt TGM. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB 2, a G protein-coupled cannabinoid receptor. Protein Expr Purif 2017; 131:109-118. [PMID: 27867058 PMCID: PMC5406253 DOI: 10.1016/j.pep.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
Abstract
Human cannabinoid receptor CB2 belongs to the class A of G protein-coupled receptor (GPCR). CB2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies.
Collapse
MESH Headings
- Chromatography, Affinity/methods
- Escherichia coli
- Gene Expression
- Humans
- Nuclear Magnetic Resonance, Biomolecular
- Receptor, Cannabinoid, CB2/biosynthesis
- Receptor, Cannabinoid, CB2/chemistry
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/isolation & purification
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/isolation & purification
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Alexei Yeliseev
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, 5625 Fishers Lane, Room 3N17, Rockville, MD, 20892, USA.
| | - Lioudmila Zoubak
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, 5625 Fishers Lane, Room 3N17, Rockville, MD, 20892, USA
| | | |
Collapse
|