1
|
Azawi S, Rincic M, Liehr T. Cytogenomic characteristics of murine breast cancer cell line JC. Mol Cytogenet 2021; 14:7. [PMID: 33526060 PMCID: PMC7852212 DOI: 10.1186/s13039-020-00524-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer (BC), one of the most frequent human tumors, is genetically and histologically heterogeneous. Treatment options can be adapted according to BC subtype. Still, research is necessary to characterize BC biology better and to study potential new treatment options. Murine BC-cell lines can be used as model systems in this respect. Results Here for the first time murine BC-cell line JC was cytogenomically characterized as being complex rearranged and near-tetraploid. Multicolor banding and array comparative genomic hybridization were applied and the result was in silico translated to the human genome. Conclusions Even though being commercially available, cell line JC was yet not much included in BC-research, most likely due to a lack of cytogenomic data. Thus, here comprehensive data is provided on chromosomal aberrations, genomic imbalances and involved breakpoints of JC cell line. Also JC could be characterized as a model for BC of luminal B type, basal-like tumor rather than for luminal A type. Supplementary information The online version of this article (10.1186/s13039-020-00524-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaymaa Azawi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000, Zagreb, Croatia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
2
|
Azawi S, Liehr T, Rincic M, Manferrari M. Molecular Cytogenomic Characterization of the Murine Breast Cancer Cell Lines C-127I, EMT6/P and TA3 Hauschka. Int J Mol Sci 2020; 21:ijms21134716. [PMID: 32630352 PMCID: PMC7369978 DOI: 10.3390/ijms21134716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To test and introduce effective and less toxic breast cancer (BC) treatment strategies, animal models, including murine BC cell lines, are considered as perfect platforms. Strikingly, the knowledge on the genetic background of applied BC cell lines is often sparse though urgently necessary for their targeted and really justified application. METHODS In this study, we performed the first molecular cytogenetic characterization for three murine BC cell lines C-127I, EMT6/P and TA3 Hauschka. Besides fluorescence in situ hybridization-banding, array comparative genomic hybridization was also applied. Thus, overall, an in silico translation for the detected imbalances and chromosomal break events in the murine cell lines to the corresponding homologous imbalances in humans could be provided. The latter enabled a comparison of the murine cell line with human BC cytogenomics. RESULTS All three BC cell lines showed a rearranged karyotype at different stages of complexity, which can be interpreted carefully as reflectance of more or less advanced tumor stages. CONCLUSIONS Accordingly, the C-127I cell line would represent the late stage BC while the cell lines EMT6/P and TA3 Hauschka would be models for the premalignant or early BC stage and an early or benign BC, respectively. With this cytogenomic information provided, these cell lines now can be applied really adequately in future research studies.
Collapse
Affiliation(s)
- Shaymaa Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| | - Martina Rincic
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, Salata 12, 10000 Zagreb, Croatia
| | - Mattia Manferrari
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
3
|
Landgraf M, Lahr CA, Kaur I, Shafiee A, Sanchez-Herrero A, Janowicz PW, Ravichandran A, Howard CB, Cifuentes-Rius A, McGovern JA, Voelcker NH, Hutmacher DW. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials 2020; 240:119791. [DOI: 10.1016/j.biomaterials.2020.119791] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
|
4
|
van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol 2020; 8:25. [PMID: 32083079 PMCID: PMC7005411 DOI: 10.3389/fcell.2020.00025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
WNT signaling is crucial for tissue morphogenesis during development in all multicellular animals. After birth, WNT/CTNNB1 responsive stem cells are responsible for tissue homeostasis in various organs and hyperactive WNT/CTNNB1 signaling is observed in many different human cancers. The first link between WNT signaling and breast cancer was established almost 40 years ago, when Wnt1 was identified as a proto-oncogene capable of driving mammary tumor formation in mice. Since that discovery, there has been a dedicated search for aberrant WNT signaling in human breast cancer. However, much debate and controversy persist regarding the importance of WNT signaling for the initiation, progression or maintenance of different breast cancer subtypes. As the first drugs designed to block functional WNT signaling have entered clinical trials, many questions about the role of aberrant WNT signaling in human breast cancer remain. Here, we discuss three major research gaps in this area. First, we still lack a basic understanding of the function of WNT signaling in normal human breast development and physiology. Second, the overall extent and precise effect of (epi)genetic changes affecting the WNT pathway in different breast cancer subtypes are still unknown. Which underlying molecular and cell biological mechanisms are disrupted as a result also awaits further scrutiny. Third, we survey the current status of targeted therapeutics that are aimed at interfering with the WNT pathway in breast cancer patients and highlight the importance and complexity of selecting the subset of patients that may benefit from treatment.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC, Bruno RD. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater 2019; 95:201-213. [PMID: 31233891 DOI: 10.1016/j.actbio.2019.06.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022]
Abstract
The extracellular matrix (ECM) of tissues is an important mediator of cell function. Moreover, understanding cellular dynamics within their specific tissue context is also important for developmental biology, cancer research, and regenerative medicine. However, robust in vitro models that incorporate tissue-specific microenvironments are lacking. Here we describe a novel mammary-specific culture protocol that combines a self-gelling hydrogel comprised solely of ECM from decellularized rat or human breast tissue with the use of our previously described 3D bioprinting platform. We initially demonstrate that undigested and decellularized mammary tissue can support mammary epithelial and tumor cell growth. We then describe a methodology for generating mammary ECM extracts that can spontaneously gel to form hydrogels. These ECM hydrogels retain unique structural and signaling profiles that elicit differential responses when normal mammary and breast cancer cells are cultured within them. Using our bioprinter, we establish that we can generate large organoids/tumoroids in the all mammary-derived hydrogel. These findings demonstrate that our system allows for growth of organoids/tumoroids in a tissue-specific matrix with unique properties, thus providing a suitable platform for ECM and epithelial/cancer cell studies. STATEMENT OF SIGNIFICANCE: Factors within extracellular matrices (ECMs) are specific to their tissue of origin. It has been shown that tissue specific factors within the mammary gland's ECM have pronounced effects on cellular differentiation and cancer behavior. Understanding the role of the ECM in controlling cell fate has major implications for developmental biology, tissue engineering, and cancer therapy. However, in vitro models to study cellular interactions with tissue specific ECM are lacking. Here we describe the generation of 3D hydrogels consisting solely of human or mouse mammary ECM. We demonstrate that these novel 3D culture substrates can sustain large 3D bioprinted organoid and tumoroid formation. This is the first demonstration of an all mammary ECM culture system capable of sustaining large structural growths.
Collapse
|
6
|
Briem E, Budkova Z, Sigurdardottir AK, Hilmarsdottir B, Kricker J, Timp W, Magnusson MK, Traustadottir GA, Gudjonsson T. MiR-203a is differentially expressed during branching morphogenesis and EMT in breast progenitor cells and is a repressor of peroxidasin. Mech Dev 2019; 155:34-47. [PMID: 30508578 DOI: 10.1016/j.mod.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/01/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs regulate developmental events such as branching morphogenesis, epithelial to mesenchymal transition (EMT) and its reverse process mesenchymal to epithelial transition (MET). In this study, we performed small RNA sequencing of a breast epithelial progenitor cell line (D492), and its mesenchymal derivative (D492M) cultured in three-dimensional microenvironment. Among the most downregulated miRNAs in D492M was miR-203a, a miRNA that plays an important role in epithelial differentiation. Increased expression of miR-203a was seen in D492, concomitant with increased complexity of branching. When miR-203a was overexpressed in D492M, a partial reversion towards epithelial phenotype was seen. Gene expression analysis of D492M and D492MmiR-203a revealed peroxidasin, a collagen IV cross-linker, as the most significantly downregulated gene in D492MmiR-203a. Collectively, we demonstrate that miR-203a expression temporally correlates with branching morphogenesis and is suppressed in D492M. Overexpression of miR-203a in D492M induces a partial MET and reduces the expression of peroxidasin. Furthermore, we demonstrate that miR-203a is a novel repressor of peroxidasin. MiR-203-peroxidasin axis may be an important regulator in branching morphogenesis, EMT/MET and basement membrane remodeling.
Collapse
Affiliation(s)
- Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Anna Karen Sigurdardottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Bylgja Hilmarsdottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Tumor Biology, The Norwegian Radium Hospital, Oslo, Norway
| | - Jennifer Kricker
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, USA
| | - Magnus Karl Magnusson
- Department of Laboratory Hematology, Landspitali - University Hospital, Iceland; Department of Pharmacology and Toxicology, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Iceland; Department of Laboratory Hematology, Landspitali - University Hospital, Iceland.
| |
Collapse
|
7
|
Landgraf M, McGovern JA, Friedl P, Hutmacher DW. Rational Design of Mouse Models for Cancer Research. Trends Biotechnol 2018; 36:242-251. [PMID: 29310843 DOI: 10.1016/j.tibtech.2017.12.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
The laboratory mouse is widely considered as a valid and affordable model organism to study human disease. Attempts to improve the relevance of murine models for the investigation of human pathologies led to the development of various genetically engineered, xenograft and humanized mouse models. Nevertheless, most preclinical studies in mice suffer from insufficient predictive value when compared with cancer biology and therapy response of human patients. We propose an innovative strategy to improve the predictive power of preclinical cancer models. Combining (i) genomic, tissue engineering and regenerative medicine approaches for rational design of mouse models with (ii) rapid prototyping and computational benchmarking against human clinical data will enable fast and nonbiased validation of newly generated models.
Collapse
Affiliation(s)
- Marietta Landgraf
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Jacqui A McGovern
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia
| | - Peter Friedl
- Radboud University Medical Center, Department of Cell Biology, Post 283, PO Box 9101, 6500HB Nijmegen, The Netherlands; University of Texas MD Anderson Cancer Center, Genitourinary Medical Oncology-Research, Houston, TX, USA; Cancer Genomics Center, Utrecht, The Netherlands
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Centre in Regenerative Medicine, Queensland University of Technology, Brisbane, Australia; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA.
| |
Collapse
|