1
|
Cox DJ, Coleman AM, Gogan KM, Phelan JJ, Ó Maoldomhnaigh C, Dunne PJ, Basdeo SA, Keane J. Inhibiting Histone Deacetylases in Human Macrophages Promotes Glycolysis, IL-1β, and T Helper Cell Responses to Mycobacterium tuberculosis. Front Immunol 2020; 11:1609. [PMID: 32793237 PMCID: PMC7390906 DOI: 10.3389/fimmu.2020.01609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious killer in the world. Mycobacterium tuberculosis (Mtb), the bacteria that causes the disease, is phagocytosed by alveolar macrophages (AM) and infiltrating monocyte-derived macrophages (MDM) in the lung. Infected macrophages then upregulate effector functions through epigenetic modifications to make DNA accessible for transcription. The metabolic switch to glycolysis and the production of proinflammatory cytokines are key effector functions, governed by epigenetic changes, that are integral to the ability of the macrophage to mount an effective immune response against Mtb. We hypothesised that suberanilohydroxamic acid (SAHA), an FDA-approved histone deacetylase inhibitor (HDACi), can modulate epigenetic changes upstream of the metabolic switch and support immune responses during Mtb infection. The rate of glycolysis in human MDM, infected with Mtb and treated with SAHA, was tracked in real time on the Seahorse XFe24 Analyzer. SAHA promoted glycolysis early in the response to Mtb. This was associated with significantly increased production of IL-1β and significantly reduced IL-10 in human MDM and AM. Since innate immune function directs downstream adaptive immune responses, we used SAHA-treated Mtb-infected AM or MDM in a co-culture system to stimulate T cells. Mtb-infected macrophages that had previously been treated with SAHA promoted IFN-γ, GM-CSF, and TNF co-production in responding T helper cells but did not affect cytotoxic T cells. These results indicate that SAHA promoted the early switch to glycolysis, increased IL-1β, and reduced IL-10 production in human macrophages infected with Mtb. Moreover, the elevated proinflammatory function of SAHA-treated macrophages resulted in enhanced T helper cell cytokine polyfunctionality. These data provide an in vitro proof-of-concept for the use of HDACi to modulate human immunometabolic processes in macrophages to promote innate and subsequent adaptive proinflammatory responses.
Collapse
Affiliation(s)
- Donal J Cox
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Amy M Coleman
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Karl M Gogan
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - James J Phelan
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Cilian Ó Maoldomhnaigh
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Pádraic J Dunne
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Sharee A Basdeo
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| | - Joseph Keane
- Trinity Translational Medicine Institute, St. James's Hospital, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Rodríguez-Rodríguez M, Herrera-Esparza R, Bollain y Goytia JJ, Pérez-Pérez ME, Pacheco-Tovar D, Murillo-Vázquez J, Pacheco-Tovar G, Avalos-Díaz E. Activation of Peptidylarginine Deiminase in the Salivary Glands of Balb/c Mice Drives the Citrullination of Ro and La Ribonucleoproteins. J Immunol Res 2017; 2017:8959687. [PMID: 29318161 PMCID: PMC5727760 DOI: 10.1155/2017/8959687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The goal of the present study was to determine whether peptidylarginine deiminase PAD2 and PAD4 enzymes are present in Balb/c mouse salivary glands and whether they are able to citrullinate Ro and La ribonucleoproteins. Salivary glands from Balb/c mice were cultured in DMEM and supplemented with one of the following stimulants: ATP, LPS, TNF, IFNγ, or IL-6. A control group without stimulant was also evaluated. PAD2, PAD4, citrullinated peptides, Ro60, and La were detected by immunohistochemistry and double immunofluorescence. PAD2 and PAD4 mRNAs and protein expression were detected by qPCR and Western blot analysis. PAD activity was assessed using an antigen capture enzyme-linked immunosorbent assay. LPS, ATP, and TNF triggered PAD2 and PAD4 expression; in contrast, no expression was detected in the control group (p < 0.001). PAD transcription slightly increased in response to stimulation. Additionally, PAD2/4 activity modified the arginine residues of a reporter protein (fibrinogen) in vitro. PADs citrullinated Ro60 and La ribonucleoproteins in vivo. Molecular stimulants induced apoptosis in ductal cells and the externalization of Ro60 and La ribonucleoproteins onto apoptotic membranes. PAD enzymes citrullinate Ro and La ribonucleoproteins, and this experimental approach may facilitate our understanding of the role of posttranslational modifications in the pathophysiology of Sjögren's syndrome.
Collapse
Affiliation(s)
- Mayra Rodríguez-Rodríguez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Rafael Herrera-Esparza
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Juan-José Bollain y Goytia
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - María-Elena Pérez-Pérez
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Deyanira Pacheco-Tovar
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Jessica Murillo-Vázquez
- Pharmacology PhD Program, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Guadalupe Pacheco-Tovar
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| | - Esperanza Avalos-Díaz
- Department of Immunology, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Guadalupe, ZAC, Mexico
| |
Collapse
|