1
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. Hum Gene Ther 2024; 35:798-813. [PMID: 39212664 PMCID: PMC11511777 DOI: 10.1089/hum.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
Affiliation(s)
- Santiago R. Castillo
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon W. Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia Devaux
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Department of Molecular Biosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Yadav R, Mahajan S, Singh H, Mehra NK, Madan J, Doijad N, Singh PK, Guru SK. Emerging In Vitro and In Vivo Models: Hope for the Better Understanding of Cancer Progression and Treatment. Adv Biol (Weinh) 2024; 8:e2300487. [PMID: 38581078 DOI: 10.1002/adbi.202300487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Nandkumar Doijad
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
3
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
4
|
Phan HTL, Lee H, Kim K. Trends and prospects in mitochondrial genome editing. Exp Mol Med 2023:10.1038/s12276-023-00973-7. [PMID: 37121968 DOI: 10.1038/s12276-023-00973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci 2022; 35:791-803. [PMID: 34991204 PMCID: PMC9066036 DOI: 10.5713/ab.21.0390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and biodiversity strategies and even meet the United Nations’ sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan
| |
Collapse
|
6
|
Chuang CK, Lin WM. Points of View on the Tools for Genome/Gene Editing. Int J Mol Sci 2021; 22:9872. [PMID: 34576035 PMCID: PMC8470269 DOI: 10.3390/ijms22189872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Animal Technology Research Center, Division of Animal Technology, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 35053, Taiwan;
| | | |
Collapse
|
7
|
Roeschlin RA, Uviedo F, García L, Molina MC, Favaro MA, Chiesa MA, Tasselli S, Franco‐Zorrilla JM, Forment J, Gadea J, Marano MR. PthA4 AT , a 7.5-repeats transcription activator-like (TAL) effector from Xanthomonas citri ssp. citri, triggers citrus canker resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1394-1407. [PMID: 31274237 PMCID: PMC6792138 DOI: 10.1111/mpp.12844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transcription activator-like effectors (TALEs) are important effectors of Xanthomonas spp. that manipulate the transcriptome of the host plant, conferring susceptibility or resistance to bacterial infection. Xanthomonas citri ssp. citri variant AT (X. citri AT ) triggers a host-specific hypersensitive response (HR) that suppresses citrus canker development. However, the bacterial effector that elicits this process is unknown. In this study, we show that a 7.5-repeat TALE is responsible for triggering the HR. PthA4AT was identified within the pthA repertoire of X. citri AT followed by assay of the effects on different hosts. The mode of action of PthA4AT was characterized using protein-binding microarrays and testing the effects of deletion of the nuclear localization signals and activation domain on plant responses. PthA4AT is able to bind DNA and activate transcription in an effector binding element-dependent manner. Moreover, HR requires PthA4AT nuclear localization, suggesting the activation of executor resistance (R) genes in host and non-host plants. This is the first case where a TALE of unusually short length performs a biological function by means of its repeat domain, indicating that the action of these effectors to reprogramme the host transcriptome following nuclear localization is not limited to 'classical' TALEs.
Collapse
Affiliation(s)
- Roxana Andrea Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
- Present address:
Facultad de Ciencias AgropecuariasUniversidad Católica de Santa FeLudueña 612S3560DYRSanta FeArgentina
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
| | - Lucila García
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
| | - María Celeste Molina
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
| | - María Alejandra Favaro
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Present address:
Facultad de Ciencias AgrariasUniversidad Nacional del Litoral, Producción VegetalKreder 2805, 3080 HOF EsperanzaSanta FeArgentina
| | - María Amalia Chiesa
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Present address:
Laboratorio de Fisiología VegetalInstituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)‐UNR/CONICETParque Villarino S/N2125Zavalla, Santa FeArgentina
| | - Sabrina Tasselli
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
| | - José Manuel Franco‐Zorrilla
- Unidad Genómica, Centro Nacional de Biotecnología (CNB)‐Consejo Superior de Investigaciones Científicas (CSIC)Darwin 328049MadridEspaña
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia‐CSICIngeniero Fausto Elio S/N.46022ValenciaEspaña
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia‐CSICIngeniero Fausto Elio S/N.46022ValenciaEspaña
| | - María Rosa Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)‐Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
| |
Collapse
|
8
|
Smith AJ, Thomas F, Shoemark D, Woolfson DN, Savery NJ. Guiding Biomolecular Interactions in Cells Using de Novo Protein-Protein Interfaces. ACS Synth Biol 2019; 8:1284-1293. [PMID: 31059644 DOI: 10.1021/acssynbio.8b00501] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An improved ability to direct and control biomolecular interactions in living cells would have an impact on synthetic biology. A key issue is the need to introduce interacting components that act orthogonally to endogenous proteomes and interactomes. Here, we show that low-complexity, de novo designed protein-protein interaction (PPI) domains can substitute for natural PPIs and guide engineered protein-DNA interactions in Escherichia coli. Specifically, we use de novo homo- and heterodimeric coiled coils to reconstitute a cytoplasmic split adenylate cyclase, recruit RNA polymerase to a promoter and activate gene expression, and oligomerize both natural and designed DNA-binding domains to repress transcription. Moreover, the stabilities of the heterodimeric coiled coils can be modulated by rational design and, thus, adjust the levels of gene activation and repression in vivo. These experiments demonstrate the possibilities for using designed proteins and interactions to control biomolecular systems such as enzyme cascades and circuits in cells.
Collapse
Affiliation(s)
- Abigail J. Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Franziska Thomas
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Deborah Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel J. Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, U.K
| |
Collapse
|
9
|
Martinez-Lage M, Torres-Ruiz R, Rodriguez-Perales S. CRISPR/Cas9 Technology: Applications and Human Disease Modeling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 152:23-48. [PMID: 29150003 DOI: 10.1016/bs.pmbts.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CRISPR/Cas9 system development has revolutionized the field of genome engineering through the efficient creation of targeted breaks in the DNA of almost any organism and cell type, opening an avenue for a wide range of applications in biomedical research and medicine. Apart from gene edition through knock-in or knock-out approaches, CRISPR/Cas9 technology has been used for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell imaging of chromosomal loci, edition of RNA and high-throughput screening. With all those technological improvements, CRISPR/Cas9 system has broadened the number of alternatives for studying gene function and the generation of more accurate disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR/Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future.
Collapse
Affiliation(s)
- Marta Martinez-Lage
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Engineering Group, Centro Nacional Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
10
|
A Transcription Activator-Like Effector Tal7 of Xanthomonas oryzae pv. oryzicola Activates Rice Gene Os09g29100 to Suppress Rice Immunity. Sci Rep 2017; 7:5089. [PMID: 28698641 PMCID: PMC5505973 DOI: 10.1038/s41598-017-04800-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/23/2017] [Indexed: 11/09/2022] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo) cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB) in rice, respectively. Unlike Xoo, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the Xoc-rice pathosystem; however, both pathogens possess transcription activator-like effectors (TALEs) that are known to modulate R or S genes in rice. The transfer of individual tal genes from Xoc RS105 (hypervirulent) into Xoc YNB0-17 (hypovirulent) led to the identification of tal7, which suppressed avrXa7-Xa7 mediated defense in rice containing an Xa7 R gene. Mobility shift and microscale thermophoresis assays showed that Tal7 bound two EBE sites in the promoters of two rice genes, Os09g29100 and Os12g42970, which encode predicted Cyclin-D4-1 and GATA zinc finger family protein, respectively. Assays using designer TALEs and a TALE-free strain of Xoo revealed that Os09g29100 was the biologically relevant target of Tal7. Tal7 activates the expression of rice gene Os09g29100 that suppresses avrXa7-Xa7 mediated defense in Rice. TALEN editing of the Tal7-binding site in the Os09g29100 gene promoter further enhanced resistance to the pathogen Xoc RS105. The suppression of effector-trigger immunity (ETI) is a phenomenon that may contribute to the scarcity of BLS resistant cultivars.
Collapse
|
11
|
Niyonzima N, Lambert AR, Werther R, De Silva Feelixge H, Roychoudhury P, Greninger AL, Stone D, Stoddard BL, Jerome KR. Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses. Protein Eng Des Sel 2017; 30:503-522. [PMID: 28873986 PMCID: PMC5914421 DOI: 10.1093/protein/gzx037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 11/14/2022] Open
Abstract
The combination of yeast surface display and flow cytometric analyses and selections is being used with increasing frequency to alter specificity of macromolecular recognition, including both protein-protein and protein-nucleic acid interactions. Here we describe the use of yeast surface display and cleavage-dependent flow cytometric assays to increase the specificity of an engineered meganuclease. The re-engineered meganuclease displays a significantly tightened specificity profile, while binding its cognate target site with a slightly lower, but still sub-nanomolar affinity. When incorporated into otherwise identical megaTAL protein scaffolds, these two nucleases display significantly different activity and toxicity profiles in cellulo. The structural basis for reprogrammed DNA cleavage specificity was further examined via high-resolution X-ray crystal structures of both enzymes. This analysis illustrated the altered protein-DNA contacts produced by mutagenesis and selection, that resulted both in altered readout of those based and a necessary reduction in DNA binding affinity that were necessary to improve specificity across the target site. The results of this study provide an illustrative example of the potential (and the challenges) associated with the use of surface display and flow cytometry for the retargeting and optimization of enzymes that act on nucleic acid substrates in a sequence-specific manner.
Collapse
Affiliation(s)
- Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Abigail R. Lambert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Rachel Werther
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Harshana De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Virology Division, Department of Laboratory Medicine, University of Washington, 1616 Eastlake Ave. E, Seattle WA 98102, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Barry L. Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Virology Division, Department of Laboratory Medicine, University of Washington, 1616 Eastlake Ave. E, Seattle WA 98102, USA
| |
Collapse
|
12
|
TALE proteins search DNA using a rotationally decoupled mechanism. Nat Chem Biol 2016; 12:831-7. [DOI: 10.1038/nchembio.2152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/27/2022]
|
13
|
Markossian S, Flamant F. CRISPR/Cas9: a breakthrough in generating mouse models for endocrinologists. J Mol Endocrinol 2016; 57:R81-92. [PMID: 27272521 DOI: 10.1530/jme-15-0305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 is a recent development in genome editing which is becoming an indispensable element of the genetic toolbox in mice. It provides outstanding possibilities for targeted modification of the genome, and is often extremely efficient. There are currently two main limitations to in ovo genome editing in mice: the first is mosaicism, which is frequent in founder mice. The second is the difficulty to evaluate the advent of off-target mutations, which often imposes to wait for germline transmission to ensure genetic segregation between wanted and unwanted genetic mutations. However rapid progresses are made, suggesting that these difficulties can be overcome in the near future.
Collapse
Affiliation(s)
- Suzy Markossian
- Institut de Génomique Fonctionnelle de LyonUniversité de Lyon, CNRS, INRA, École Normale Supérieure de Lyon, Lyon Cedex 07, France
| | - Frédéric Flamant
- Institut de Génomique Fonctionnelle de LyonUniversité de Lyon, CNRS, INRA, École Normale Supérieure de Lyon, Lyon Cedex 07, France
| |
Collapse
|