1
|
Garcia DA, Pierre AF, Quirino L, Acharya G, Vasudevan A, Pei Y, Chung E, Chang JYH, Lee S, Endow M, Kuakini K, Bresnahan M, Chumpitaz M, Rajappan K, Parker S, Chivukula P, Boehme SA, Diaz-Trelles R. Lipid nanoparticle delivery of TALEN mRNA targeting LPA causes gene disruption and plasma lipoprotein(a) reduction in transgenic mice. Mol Ther 2025; 33:90-103. [PMID: 39563033 PMCID: PMC11764125 DOI: 10.1016/j.ymthe.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/11/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Lipoprotein(a), or Lp(a), is encoded by the LPA gene and is a causal genetic risk factor for cardiovascular disease. Individuals with high Lp(a) are at risk for cardiovascular morbidity and are refractory to standard lipid-lowering agents. Lp(a)-lowering therapies currently in clinical development require repetitive dosing, while a gene editing approach presents an opportunity for a single-dose treatment. In this study, mRNAs encoding transcription activator-like effector nucleases (TALENs) were designed to target human LPA for gene disruption and permanent Lp(a) reduction. TALEN mRNAs were screened in vitro and found to cause on-target gene editing and target protein reduction with minimal off-target editing. TALEN mRNAs were then encapsulated with LUNAR, a proprietary lipid nanoparticle (LNP), and administered to transgenic mice that expressed a human LPA transgene. A single dose of TALEN mRNA-LNPs reduced plasma Lp(a) levels in mice by over 80%, which was sustained for at least 5 weeks. Moreover, both standard and long-read next-generation sequencing confirmed the presence of gene-inactivating deletions at LPA transgene loci. Overall, this study serves as a proof-of-concept for using TALEN-mediated gene editing to disrupt LPA in vivo, paving the way for the development of a feasible gene editing therapy for patients with high Lp(a).
Collapse
Affiliation(s)
- Daniel A Garcia
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Abigail F Pierre
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Linda Quirino
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Grishma Acharya
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Aishwarya Vasudevan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Yihua Pei
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Emily Chung
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Jason Y H Chang
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Samuel Lee
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Michael Endow
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kristen Kuakini
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Michael Bresnahan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Maria Chumpitaz
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Kumar Rajappan
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Suezanne Parker
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Pad Chivukula
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Stefen A Boehme
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Ramon Diaz-Trelles
- Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Badwal AK, Singh S. A comprehensive review on the current status of CRISPR based clinical trials for rare diseases. Int J Biol Macromol 2024; 277:134097. [PMID: 39059527 DOI: 10.1016/j.ijbiomac.2024.134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
A considerable fraction of population in the world suffers from rare diseases. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its related Cas proteins offer a modern form of curative gene therapy for treating the rare diseases. Hereditary transthyretin amyloidosis, hereditary angioedema, duchenne muscular dystrophy and Rett syndrome are a few examples of such rare diseases. CRISPR/Cas9, for example, has been used in the treatment of β-thalassemia and sickle cell disease (Frangoul et al., 2021; Pavani et al., 2021) [1,2]. Neurological diseases such as Huntington's have also been focused in some studies involving CRISPR/Cas (Yang et al., 2017; Yan et al., 2023) [3,4]. Delivery of these biologicals via vector and non vector mediated methods depends on the type of target cells, characteristics of expression, time duration of expression, size of foreign genetic material etc. For instance, retroviruses find their applicability in case of ex vivo delivery in somatic cells due to their ability to integrate in the host genome. These have been successfully used in gene therapy involving X-SCID patients although, incidence of inappropriate activation has been reported. On the other hand, ex vivo gene therapy for β-thalassemia involved use of BB305 lentiviral vector for high level expression of CRISPR biological in HSCs. The efficacy and safety of these biologicals will decide their future application as efficient genome editing tools as they go forward in further stages of human clinical trials. This review focuses on CRISPR/Cas based therapies which are at various stages of clinical trials for treatment of rare diseases and the constraints and ethical issues associated with them.
Collapse
Affiliation(s)
- Amneet Kaur Badwal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
3
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
4
|
Kovač A, Miskey C, Ivics Z. Sleeping Beauty Transposon Insertions into Nucleolar DNA by an Engineered Transposase Localized in the Nucleolus. Int J Mol Sci 2023; 24:14978. [PMID: 37834425 PMCID: PMC10573994 DOI: 10.3390/ijms241914978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Transposons are nature's gene delivery vehicles that can be harnessed for experimental and therapeutic purposes. The Sleeping Beauty (SB) transposon shows efficient transposition and long-term transgene expression in human cells, and is currently under clinical development for gene therapy. SB transposition occurs into the human genome in a random manner, which carries a risk of potential genotoxic effects associated with transposon integration. Here, we evaluated an experimental strategy to manipulate SB's target site distribution by preferentially compartmentalizing the SB transposase to the nucleolus, which contains repetitive ribosomal RNA (rRNA) genes. We generated a fusion protein composed of the nucleolar protein nucleophosmin (B23) and the SB100X transposase, which was found to retain almost full transposition activity as compared to unfused transposase and to be predominantly localized to nucleoli in transfected human cells. Analysis of transposon integration sites generated by B23-SB100X revealed a significant enrichment into the p-arms of chromosomes containing nucleolus organizing regions (NORs), with preferential integration into the p13 and p11.2 cytobands directly neighboring the NORs. This bias in the integration pattern was accompanied by an enrichment of insertions into nucleolus-associated chromatin domains (NADs) at the periphery of nucleolar DNA and into lamina-associated domains (LADs). Finally, sub-nuclear targeting of the transposase resulted in preferential integration into chromosomal domains associated with the Upstream Binding Transcription Factor (UBTF) that plays a critical role in the transcription of 47S rDNA gene repeats of the NORs by RNA Pol I. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Research Centre of the Division of Hematology, Gene and Cell Therapy, Paul Ehrlich Institute, Paul Ehrlich Str. 51–59, D-63225 Langen, Germany; (A.K.); (C.M.)
| |
Collapse
|
5
|
Talluri S. Engineering and Design of Programmable Genome Editors. J Phys Chem B 2022; 126:5140-5150. [PMID: 35819243 DOI: 10.1021/acs.jpcb.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmable genome editors are enzymes that can be targeted to a specific location in the genome for making site-specific alterations or deletions. The engineering, design, and development of sequence-specific editors has resulted in a dramatic increase in the precision of editing for nucleotide sequences. These editors can target specific locations in a genome, in vivo. The genome editors are being deployed for the development of genetically modified organisms for agriculture and industry, and for gene therapy of inherited human genetic disorders, cancer, and immunotherapy. Experimental and computational studies of structure, binding, activity, dynamics, and folding, reviewed here, have provided valuable insights that have the potential for increasing the functional efficiency of these gene/genome editors. Biochemical and biophysical studies of the specificities of natural and engineered genome editors reveal that increased binding affinity can be detrimental because of the increase of off-target effects and that the engineering and design of genome editors with higher specificity may require modulation and control of the conformational dynamics.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India 530045
| |
Collapse
|
6
|
Rahimmanesh I, Boshtam M, Kouhpayeh S, Khanahmad H, Dabiri A, Ahangarzadeh S, Esmaeili Y, Bidram E, Vaseghi G, Haghjooy Javanmard S, Shariati L, Zarrabi A, Varma RS. Gene Editing-Based Technologies for Beta-hemoglobinopathies Treatment. BIOLOGY 2022; 11:biology11060862. [PMID: 35741383 PMCID: PMC9219845 DOI: 10.3390/biology11060862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/12/2023]
Abstract
Beta (β)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the β-globin chains in hemoglobin structure. Traditional treatment for β-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or β-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for β-thalassemia treatment and paving the way for patients' therapy.
Collapse
Affiliation(s)
- Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan 76351-81647, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Elham Bidram
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81583-88994, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
- Cancer Prevention Research, Isfahan University of Medical Sciences, Isfahan 73461-81746, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
7
|
González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH. Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. Int J Mol Sci 2021; 22:10355. [PMID: 34638696 PMCID: PMC8509008 DOI: 10.3390/ijms221910355] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in programmable nucleases including meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) have propelled genome editing from explorative research to clinical and industrial settings. Each technology, however, features distinct modes of action that unevenly impact their applicability across the entire genome and are often tested under significantly different conditions. While CRISPR-Cas is currently leading the field due to its versatility, quick adoption, and high degree of support, it is not without limitations. Currently, no technology can be regarded as ideal or even applicable to every case as the context dictates the best approach for genetic modification within a target organism. In this review, we implement a four-pillar framework (context, feasibility, efficiency, and safety) to assess the main genome editing platforms, as a basis for rational decision-making by an expanding base of users, regulators, and consumers. Beyond carefully considering their specific use case with the assessment framework proposed here, we urge stakeholders interested in genome editing to independently validate the parameters of their chosen platform prior to commitment. Furthermore, safety across all applications, particularly in clinical settings, is a paramount consideration and comprehensive off-target detection strategies should be incorporated within workflows to address this. Often neglected aspects such as immunogenicity and the inadvertent selection of mutants deficient for DNA repair pathways must also be considered.
Collapse
Affiliation(s)
- Nicolás González Castro
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Jan Bjelic
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Gunya Malhotra
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Cong Huang
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
| | - Salman Hasan Alsaffar
- School of Biosciences, Faculty of Science, University of Melbourne, Parkville 3052, Australia; (N.G.C.); (G.M.); (C.H.); (S.H.A.)
- Biotechnology Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| |
Collapse
|
8
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
9
|
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chem Biol 2021; 28:934-951. [PMID: 34004187 PMCID: PMC8286327 DOI: 10.1016/j.chembiol.2021.04.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or "proteostasis," is indispensable for a balanced, healthy environment within the cell. However, when natural proteostasis mechanisms are overwhelmed from excessive loads of dysregulated proteins, their accumulation can lead to disease initiation and progression. Recently, the induced degradation of such disease-causing proteins by heterobifunctional molecules, i.e., PROteolysis TArgeting Chimeras (PROTACs), is emerging as a potential therapeutic modality. In the 2 decades since the PROTAC concept was proposed, several additional Targeted Protein Degradation (TPD) strategies have also been explored to target previously undruggable proteins, such as transcription factors. In this review, we discuss the progress and evolution of the TPD field, the breadth of the proteins targeted by PROTACs and the biological effects of their degradation.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Scott TA, Morris KV. Designer nucleases to treat malignant cancers driven by viral oncogenes. Virol J 2021; 18:18. [PMID: 33441159 PMCID: PMC7805041 DOI: 10.1186/s12985-021-01488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022] Open
Abstract
Viral oncogenic transformation of healthy cells into a malignant state is a well-established phenomenon but took decades from the discovery of tumor-associated viruses to their accepted and established roles in oncogenesis. Viruses cause ~ 15% of know cancers and represents a significant global health burden. Beyond simply causing cellular transformation into a malignant form, a number of these cancers are augmented by a subset of viral factors that significantly enhance the tumor phenotype and, in some cases, are locked in a state of oncogenic addiction, and substantial research has elucidated the mechanisms in these cancers providing a rationale for targeted inactivation of the viral components as a treatment strategy. In many of these virus-associated cancers, the prognosis remains extremely poor, and novel drug approaches are urgently needed. Unlike non-specific small-molecule drug screens or the broad-acting toxic effects of chemo- and radiation therapy, the age of designer nucleases permits a rational approach to inactivating disease-causing targets, allowing for permanent inactivation of viral elements to inhibit tumorigenesis with growing evidence to support their efficacy in this role. Although many challenges remain for the clinical application of designer nucleases towards viral oncogenes; the uniqueness and clear molecular mechanism of these targets, combined with the distinct advantages of specific and permanent inactivation by nucleases, argues for their development as next-generation treatments for this aggressive group of cancers.
Collapse
Affiliation(s)
- Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
11
|
Kovač A, Miskey C, Menzel M, Grueso E, Gogol-Döring A, Ivics Z. RNA-guided retargeting of S leeping Beauty transposition in human cells. eLife 2020; 9:e53868. [PMID: 32142408 PMCID: PMC7077980 DOI: 10.7554/elife.53868] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300 bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
- Adrian Kovač
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| |
Collapse
|
12
|
Chen H, Guo Y, Qiu Y, Huang H, Lin C, Liu M, Chen X, Yang P, Wu K. Efficient genome engineering of Toxoplasma gondii using the TALEN technique. Parasit Vectors 2019; 12:112. [PMID: 30876436 PMCID: PMC6419828 DOI: 10.1186/s13071-019-3378-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aromatic amino acid hydroxylase 2 (AAH2) is a bradyzoite-specific upregulated protein that may alter host behaviour by altering the host dopaminergic pathway. To better understand the role of the parasite’s AAH2 in host-parasite interactions, we generated an AAH2 fluorescent marker strain of T. gondii using the TALEN technique. Methods We generated an AAH2 fluorescent marker strain of T. gondii, which was designated PRU/AAH2-eGFP, using the TALEN technique. This strain stably expressed pyrimethamine resistance for screening and expressed enhanced green fluorescent protein (eGFP)-tagged AAH2 in the bradyzoite stage. The bradyzoite conversion of PRU/AAH2-eGFP was observed both in vitro and in vivo. The fluorescence localization of AAH2 in mouse models of chronic infection was observed by a Bruker in vivo imaging system. Results Transgenic T. gondii was successfully generated by the TALEN system. The eGFP-tagged AAH2 could be detected by in vivo imaging. Conclusions This study verified the feasibility of using TALEN technology for T. gondii research and provided an in vivo imaging method for in vivo research of bradyzoite-stage proteins. Electronic supplementary material The online version of this article (10.1186/s13071-019-3378-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yijia Guo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yushu Qiu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huanbin Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Changqing Lin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Peiliang Yang
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Chu C, Yang Z, Yang J, Yan L, Si C, Kang Y, Chen Z, Chen Y, Ji W, Niu Y. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases. BMC Biotechnol 2019; 19:7. [PMID: 30646876 PMCID: PMC6334428 DOI: 10.1186/s12896-018-0494-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Background Non-human primate (NHP) models can closely mimic human physiological functions and are therefore highly valuable in biomedical research. Genome editing is now developing rapidly due to the precision and efficiency offered by engineered site-specific endonuclease-based systems, such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) system. It has been demonstrated that these programmable nucleases can introduce genetic changes in embryos from many species including NHPs. In 2014, we reported the first genetic editing of macaques using TALENs and CRISPR/Cas9. Subsequently, we characterized the phenotype of a methyl CpG binding protein 2 (MECP2)-mutant cynomolgus monkey model of Rett syndrome generated using the TALEN approach. These efforts not only accelerated the advance of modeling genetic diseases in NHPs, but also encouraged us to develop specific gene knock-in monkeys. In this study, we assess the possibility of homologous recombination (HR)-mediated gene replacement using TALENs in monkeys, and generate preimplantation embryos carrying an EmGFP fluorescent reporter constructed in the OCT4 gene. Result We assembled a pair of TALENs specific to the first exon of the OCT4 gene and constructed a donor vector consisting of the homology arms cloned from the monkey genome DNA, flanking an EmGFP cassette. Next, we co-injected the TALENs-coding plasmid and donor plasmid into the cytoplasm of 122 zygotes 6–8 h after fertilization. Sequencing and immunofluorescence revealed that the OCT4-EmGFP knock-in allele had been successfully generated by TALENs-mediated HR at an efficiency of 11.3% (7 out of 62) or 11.1% (1 out of 9), respectively, in monkey embryos. Conclusion We have successfully, for the first time, obtained OCT4-EmGFP knock-in monkey embryos via HR mediated by TALENs. Our results suggest that gene targeting through TALEN-assisted HR is a useful approach to introduce precise genetic modification in NHPs. Electronic supplementary material The online version of this article (10.1186/s12896-018-0494-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chu Chu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhaohui Yang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiayin Yang
- The Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, China
| | - Li Yan
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chenyang Si
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhenzhen Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
14
|
Allen AG, Chung CH, Atkins A, Dampier W, Khalili K, Nonnemacher MR, Wigdahl B. Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Front Microbiol 2018; 9:2940. [PMID: 30619107 PMCID: PMC6304358 DOI: 10.3389/fmicb.2018.02940] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
Abstract
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Leidy-Davis T, Cheng K, Goodwin LO, Morgan JL, Juan WC, Roca X, Ong ST, Bergstrom DE. Viable Mice with Extensive Gene Humanization (25-kbp) Created Using Embryonic Stem Cell/Blastocyst and CRISPR/Zygote Injection Approaches. Sci Rep 2018; 8:15028. [PMID: 30301924 PMCID: PMC6177426 DOI: 10.1038/s41598-018-33408-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Here, we describe an expansion of the typical DNA size limitations associated with CRISPR knock-in technology, more specifically, the physical extent to which mouse genomic DNA can be replaced with donor (in this case, human) DNA at an orthologous locus by zygotic injection. Driving our efforts was the desire to create a whole animal model that would replace 17 kilobase pairs (kbp) of the mouse Bcl2l11 gene with the corresponding 25-kbp segment of human BCL2L11, including a conditionally removable segment (2.9-kbp) of intron 2, a cryptic human exon immediately 3' of this, and a native human exon some 20 kbp downstream. Using two methods, we first carried out the replacement by employing a combination of bacterial artificial chromosome recombineering, classic embryonic stem cell (ESC) targeting, dual selection, and recombinase-driven cassette removal (ESC/Blastocyst Approach). Using a unique second method, we employed the same vector (devoid of its selectable marker cassettes), microinjecting it along with redundant single guide RNAs (sgRNAs) and Cas9 mRNA into mouse zygotes (CRISPR/Zygote Approach). In both instances, we were able to achieve humanization of Bcl2l11 to the extent designed, remove all selection cassettes, and demonstrate the functionality of the conditionally removable, loxP-flanked, 2.9-kbp intronic segment.
Collapse
Affiliation(s)
| | - Kai Cheng
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
- Genetically Engineered Models and Services, Charles River Laboratories, Wilmington, USA
| | - Leslie O Goodwin
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Judith L Morgan
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA
- Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, USA
| | - Wen Chun Juan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- MSD Pharma (Singapore) Private Limited, Singapore, Republic of Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Programme, Duke-NUS Medical School, Singapore, Republic of Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Republic of Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore, Republic of Singapore
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David E Bergstrom
- Genetic Resource Science, The Jackson Laboratory, Bar Harbor, ME, USA.
- Cancer Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
16
|
Hodge R, Narayanavari SA, Izsvák Z, Ivics Z. Wide Awake and Ready to Move: 20 Years of Non-Viral Therapeutic Genome Engineering with the Sleeping Beauty Transposon System. Hum Gene Ther 2018; 28:842-855. [PMID: 28870121 DOI: 10.1089/hum.2017.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
Collapse
Affiliation(s)
- Russ Hodge
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Suneel A Narayanavari
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin, Germany
| | - Zoltán Ivics
- 2 Division of Medical Biotechnology, Paul Ehrlich Institute , Langen, Germany
| |
Collapse
|
17
|
Kruminis-Kaszkiel E, Juranek J, Maksymowicz W, Wojtkiewicz J. CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 2018; 19:ijms19030906. [PMID: 29562705 PMCID: PMC5877767 DOI: 10.3390/ijms19030906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin.
Collapse
Affiliation(s)
- Ewa Kruminis-Kaszkiel
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Judyta Juranek
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
18
|
Baird DM, Hendrickson EA. Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:89-112. [PMID: 29956293 DOI: 10.1007/978-981-13-0593-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chromosomal translocations are now well understood to not only constitute signature molecular markers for certain human cancers but often also to be causative in the genesis of that tumor. Despite the obvious importance of such events, the molecular mechanism of chromosomal translocations in human cells remains poorly understood. Part of the explanation for this dearth of knowledge is due to the complexity of the reaction and the need to archaeologically work backwards from the final product (a translocation) to the original unrearranged chromosomes to infer mechanism. Although not definitive, these studies have indicated that the aberrant usage of endogenous DNA repair pathways likely lies at the heart of the problem. An equally obfuscating aspect of this field, however, has also originated from the unfortunate species-specific differences that appear to exist in the relevant model systems that have been utilized to investigate this process. Specifically, yeast and murine systems (which are often used by basic science investigators) rely on different DNA repair pathways to promote chromosomal translocations than human somatic cells. In this chapter, we will review some of the basic concepts of chromosomal translocations and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells. In addition, we will focus on a specific subset of translocations that involve the very end of a chromosome (a telomere). A better understanding of the relationship between DNA repair pathways and chromosomal translocations is guaranteed to lead to improved therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Guha TK, Edgell DR. Applications of Alternative Nucleases in the Age of CRISPR/Cas9. Int J Mol Sci 2017; 18:ijms18122565. [PMID: 29186020 PMCID: PMC5751168 DOI: 10.3390/ijms18122565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/10/2023] Open
Abstract
Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases (MNs), and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (including Cas9) have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
20
|
Kebriaei P, Izsvák Z, Narayanavari SA, Singh H, Ivics Z. Gene Therapy with the Sleeping Beauty Transposon System. Trends Genet 2017; 33:852-870. [PMID: 28964527 DOI: 10.1016/j.tig.2017.08.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/16/2022]
Abstract
The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Partow Kebriaei
- Department of Stem Cell Transplant and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, USA
| | - Zsuzsanna Izsvák
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suneel A Narayanavari
- Mobile DNA, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Harjeet Singh
- Department of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany.
| |
Collapse
|
21
|
Davis AM, Plowright AT, Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov 2017; 16:681-698. [PMID: 28935911 DOI: 10.1038/nrd.2017.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The strong biological rationale to pursue challenging drug targets such as protein-protein interactions has stimulated the development of novel screening strategies, such as DNA-encoded libraries, to allow broader areas of chemical space to be searched. There has also been renewed interest in screening natural products, which are the result of evolutionary selection for a function, such as interference with a key signalling pathway of a competing organism. However, recent advances in several areas, such as understanding of the biosynthetic pathways for natural products, synthetic biology and the development of biosensors to detect target molecules, are now providing new opportunities to directly harness evolutionary pressure to identify and optimize compounds with desired bioactivities. Here, we describe innovations in the key components of such strategies and highlight pioneering examples that indicate the potential of the directed-evolution concept. We also discuss the scientific gaps and challenges that remain to be addressed to realize this potential more broadly in drug discovery.
Collapse
Affiliation(s)
- Andrew M Davis
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| | - Alleyn T Plowright
- Integrated Drug Discovery, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Eric Valeur
- AstraZeneca R&D Gothenburg, Pepparedsleden 1, Mölndal, 43150, Sweden
| |
Collapse
|
22
|
An C, Zhu G, Martos SN, Feng X, Zhang H, Jia Y, Wang Z. TALEN-Mediated FLAG-Tagging of Endogenous Histone Methyltransferase DOT1L. ADVANCES IN BIOSCIENCE AND BIOTECHNOLOGY (PRINT) 2017; 8:311-323. [PMID: 29796335 PMCID: PMC5963693 DOI: 10.4236/abb.2017.89023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.
Collapse
Affiliation(s)
- Cheng An
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Guangjing Zhu
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N. Martos
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Xue Feng
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan, China
| | | | - Zhibin Wang
- Laboratory of Human Environmental Epigenomes, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- School of Life Sciences, Hubei University, Wuhan, China
- Fenxian Central Hospital, Shanghai, China
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Kolb AF, Knowles C, Pultinevicius P, Harbottle JA, Petrie L, Robinson C, Sorrell DA. Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors. Methods Mol Biol 2017; 1642:127-150. [PMID: 28815498 DOI: 10.1007/978-1-4939-7169-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Site-specific recombinases are important tools for the modification of mammalian genomes. In conjunction with viral vectors, they can be utilized to mediate site-specific gene insertions in animals and in cell lines which are difficult to transfect. Here we describe a method for the generation and analysis of an adenovirus vector supporting a recombinase-mediated cassette exchange reaction and discuss the advantages and limitations of this approach.
Collapse
Affiliation(s)
- Andreas F Kolb
- Metabolic Health Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK. .,Hannah Research Institute, Ayr, UK.
| | - Christopher Knowles
- Metabolic Health Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Patrikas Pultinevicius
- Metabolic Health Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jennifer A Harbottle
- Metabolic Health Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Linda Petrie
- Metabolic Health Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - David A Sorrell
- Hannah Research Institute, Ayr, UK.,Horizon Biodiscovery, Cambridge, UK
| |
Collapse
|
24
|
Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017; 74:2439-2450. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023]
Abstract
HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.
Collapse
|
25
|
Esensten JH, Bluestone JA, Lim WA. Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. ANNUAL REVIEW OF PATHOLOGY 2017; 12:305-330. [PMID: 27959633 PMCID: PMC5557092 DOI: 10.1146/annurev-pathol-052016-100304] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.
Collapse
Affiliation(s)
- Jonathan H Esensten
- Department of Laboratory Medicine, University of California, San Francisco, California 94143;
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, California 94143;
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94158-2517;
| |
Collapse
|
26
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
27
|
Oh-Hashi K, Furuta E, Norisada J, Amaya F, Hirata Y, Kiuchi K. Application of NanoLuc to monitor the intrinsic promoter activity of GRP78 using the CRISPR/Cas9 system. Genes Cells 2016; 21:1137-1143. [PMID: 27515429 DOI: 10.1111/gtc.12401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022]
Abstract
In this study, we applied a highly sensitive small luciferase, NanoLuc, to establish a knock-in cell line using the CRISPR/Cas9 system and characterized the endogenous promoter activity of the glucose-regulated protein 78 (GRP78) gene. The N-terminal region of the human GRP78 gene was fused to the NanoLuc gene and aligned with the puromycin-resistant gene through the 2A peptide sequence and used as a knock-in vector. The selected cells responded to both pharmacological and genetic ER stress and show NanoLuc-based CRISPR/Cas9 system is a very useful tool to isolate gene-edited cells and to characterize the endogenous promoter activity for genes of interest.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Eri Furuta
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Junpei Norisada
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Fumimasa Amaya
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazutoshi Kiuchi
- United Graduate School of Drug Discovery and Medical Information Science, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
28
|
White MK, Kaminski R, Wollebo H, Hu W, Malcolm T, Khalili K. Gene Editing for Treatment of Neurological Infections. Neurotherapeutics 2016; 13:547-54. [PMID: 27150390 PMCID: PMC4965407 DOI: 10.1007/s13311-016-0439-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The study of neurological infections by viruses defines the field of neurovirology, which has emerged in the last 30 years and was founded upon the discovery of a number of viruses capable of infecting the human nervous system. Studies have focused on the molecular and biological basis of viral neurological diseases with the aim of revealing new therapeutic options. The first studies of neurovirological infections can be traced back to the discovery that some viruses have an affinity for the nervous system with research into rabies by Louis Pasteur and others in the 1880s. Today, the immense public health impact of neurovirological infections is illustrated by diseases such as neuroAIDS, progressive multifocal leukoencephalopathy, and viral encephalitis. Recent research has seen the development of powerful new techniques for gene editing that promise revolutionary opportunities for the development of novel therapeutic options. In particular, clustered regulatory interspaced short palindromic repeat-associated 9 system provides an effective, highly specific and versatile tool for targeting DNA viruses that are beginning to allow the development of such new approaches. In this short review, we discuss these recent developments, how they pertain to neurological infections, and future prospects.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Hassen Wollebo
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Thomas Malcolm
- Excision Biotherapeutics, Inc., 3624 Market Street, #514, Philadelphia, PA, 19104, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|