1
|
Belousov PV. Analysis of the Repertoires of Circulating Autoantibodies' Specificities as a Tool for Identification of the Tumor-Associated Antigens: Current Problems and Solutions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1225-1242. [PMID: 34903148 DOI: 10.1134/s0006297921100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 06/14/2023]
Abstract
Circulating autoantibodies against tumor-associated autoantigens (TAA) may serve as valuable biomarkers for a wide range of diagnostic purposes. Modern immunology offers a large variety of methods for in-depth comparative analysis of the repertoires of circulating antibodies' antigenic specificities in health and disease. Nevertheless, this research field so far has met somewhat limited clinical success, while numerous data on the repertoires of circulating autoantibodies' specificities in cancer patients are poorly integrated into the contemporary picture of the immunological and molecular landscapes of human tumors. This review is an attempt to identify and systematize the key and essentially universal conceptual and methodological limitations of analyses of the repertoires of circulating antibodies' antigenic specificities in cancer (expression bias, redundancy of TAA repertoires, identification of natural IgG, the absence of the pathogenetically relevant context in the experimental systems used to detect TAA), as well as to discuss potential and already known methodological improvements that may significantly increase the detectability of the pathogenetically relevant and diagnostically significant bona fide TAA.
Collapse
Affiliation(s)
- Pavel V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center of Endocrinology, Ministry of Health of the Russian Federation, Moscow, 117036, Russia
| |
Collapse
|
2
|
Vengesai A, Naicker T, Kasambala M, Midzi H, Mduluza-Jokonya T, Rusakaniko S, Mduluza T. Clinical utility of peptide microarrays in the serodiagnosis of neglected tropical diseases in sub-Saharan Africa: protocol for a diagnostic test accuracy systematic review. BMJ Open 2021; 11:e042279. [PMID: 34330850 PMCID: PMC8327806 DOI: 10.1136/bmjopen-2020-042279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Neglected tropical diseases tend to cluster in the same poor populations and, to make progress with their control, they will have to be dealt with in an integrated manner. Peptide microarrays may be a solution to these problems, where diagnosis for co-infection can be detected simultaneously using the one tool. A meta-analysis using hierarchical models will be performed to assess the diagnostic accuracy of peptide microarrays for detecting schistosomiasis (Schistosoma mansoni and S. haematobium), soil-transmitted helminths (Trichuris trichiura, Ascaris lumbricoides and Necator americanus), trachoma (Chlamydia trachomatis), lymphatic filariasis (Wuchereria bancrofti) and onchocerciasis (Onchocerca volvulus) in people residing in sub-Saharan Africa. METHODS AND ANALYSIS A comprehensive search of the following databases will be performed: Cochrane Infectious Diseases Group Specialised Register, PubMed, EMBASE and The Web of Science. Studies comparing peptide microarrays with a reference standard from a random or consecutive series of patients will be included in the study. Two review authors will independently screen titles and abstracts for relevance, assess full-text articles for inclusion and carry out data extraction using a tailored data extraction form. The quality Assessment of Diagnostic Accuracy Studies-2 tool will be used to assess the quality of the selected studies. The bivariate model and the hierarchical summary receiver operating characteristic curve model will be performed to evaluate the diagnostic accuracy of the peptide microarrays. Meta-regression analyses will be performed to investigate heterogeneity across studies. ETHICS AND DISSEMINATION There is no requirement for ethical approval because the work will be carried out using previously published data, without human beings involvement. Findings will be disseminated through peer-reviewed publication and in conference presentations. PROSPERO REGISTRATION NUMBER CRD42020175145.
Collapse
Affiliation(s)
- Arthur Vengesai
- Biotechnology and Biochemistry, University of Zimbabwe Faculty of Science, Harare, Zimbabwe
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Maritha Kasambala
- Faculty of Science and Agriculture, University of KwaZulu-Natal, Durban, South Africa
| | - Herald Midzi
- Biotechnology and Biochemistry, University of Zimbabwe Faculty of Science, Harare, Zimbabwe
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Takafira Mduluza
- Biotechnology and Biochemistry, University of Zimbabwe Faculty of Science, Harare, Zimbabwe
| |
Collapse
|
3
|
Prechl J. Network Organization of Antibody Interactions in Sequence and Structure Space: the RADARS Model. Antibodies (Basel) 2020; 9:antib9020013. [PMID: 32384800 PMCID: PMC7345901 DOI: 10.3390/antib9020013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity in vertebrates is a complex self-organizing network of molecular interactions. While deep sequencing of the immune-receptor repertoire may reveal clonal relationships, functional interpretation of such data is hampered by the inherent limitations of converting sequence to structure to function. In this paper, a novel model of antibody interaction space and network, termed radial adjustment of system resolution, RAdial ADjustment of System Resolution (RADARS), is proposed. The model is based on the radial growth of interaction affinity of antibodies towards an infinity of directions in structure space, each direction corresponding to particular shapes of antigen epitopes. Levels of interaction affinity appear as free energy shells of the system, where hierarchical B-cell development and differentiation takes place. Equilibrium in this immunological thermodynamic system can be described by a power law distribution of antibody-free energies with an ideal network degree exponent of phi square, representing a scale-free fractal network of antibody interactions. Plasma cells are network hubs, memory B cells are nodes with intermediate degrees, and B1 cells function as nodes with minimal degree. Overall, the RADARS model implies that a finite number of antibody structures can interact with an infinite number of antigens by immunologically controlled adjustment of interaction energy distribution. Understanding quantitative network properties of the system should help the organization of sequence-derived predicted structural data.
Collapse
Affiliation(s)
- József Prechl
- Diagnosticum Zrt., 126. Attila u., 1047 Budapest, Hungary
| |
Collapse
|
4
|
Cretich M, Gori A, D'Annessa I, Chiari M, Colombo G. Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays. Antibodies (Basel) 2019; 8:E23. [PMID: 31544829 PMCID: PMC6640701 DOI: 10.3390/antib8010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
Peptides and peptidomimetics have attracted revived interest regarding their applications in chemical biology over the last few years. Their chemical versatility, synthetic accessibility and the ease of storage and management compared to full proteins have made peptides particularly interesting in diagnostic applications, where they proved to efficiently recapitulate the molecular recognition properties of larger protein antigens, and were proven to be able to capture antibodies circulating in the plasma and serum of patients previously exposed to bacterial or viral infections. Here, we describe the development, integration and application of strategies for computational prediction and design, advanced chemical synthesis, and diagnostic deployment in multiplexed assays of peptide-based materials which are able to bind antibodies of diagnostic as well as therapeutic interest. By presenting successful applications of such an integrated strategy, we argue that they will have an ever-increasing role in both basic and clinical realms of research, where important advances can be expected in the next few years.
Collapse
Affiliation(s)
- Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Ilda D'Annessa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
5
|
Sola L, Gagni P, D’Annessa I, Capelli R, Bertino C, Romanato A, Damin F, Bergamaschi G, Marchisio E, Cuzzocrea A, Bombaci M, Grifantini R, Chiari M, Colombo G, Gori A, Cretich M. Enhancing Antibody Serodiagnosis Using a Controlled Peptide Coimmobilization Strategy. ACS Infect Dis 2018; 4:998-1006. [PMID: 29570266 DOI: 10.1021/acsinfecdis.8b00014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antigen immunoreactivity is often determined by surface regions defined by the 3D juxtapositions of amino acids stretches that are not continuous in the linear sequence. As such, mimicking an antigen immunoreactivity by means of putative linear peptide epitopes for diagnostic purposes is not trivial. Here we present a straightforward and robust method to extend the reach of immune-diagnostic probes design by copresenting peptides belonging to the same antigenic surface. In this case study focused on a computationally predicted Zika virus NS1 protein putative antigenic region, we reached a diagnostic confidence by the oriented and spatially controlled coimmobilization of peptide sequences found adjacent within the protein fold, that cooperatively interacted to provide enhanced immunoreactivity with respect to single linear epitopes. Through our method, we were able to differentiate Zika infected individuals from healthy controls. Remarkably, our strategy fits well with the requirements to build high-throughput screening platforms of linear and mixed peptide libraries, and it could possibly facilitate the rapid identification of conformational immunoreactive regions.
Collapse
Affiliation(s)
- Laura Sola
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Paola Gagni
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Riccardo Capelli
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Camilla Bertino
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Alessandro Romanato
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Francesco Damin
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Greta Bergamaschi
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Edoardo Marchisio
- Diagnostic Bioprobes s.r.l. (DiaPro), via G. Carducci 27, 20090 Sesto San Giovanni, Italy
| | - Angela Cuzzocrea
- Diagnostic Bioprobes s.r.l. (DiaPro), via G. Carducci 27, 20090 Sesto San Giovanni, Italy
| | - Mauro Bombaci
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Via Francesco Sforza. 35, 20122 Milano, Italy
| | - Renata Grifantini
- Istituto Nazionale di Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Via Francesco Sforza. 35, 20122 Milano, Italy
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| | - Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
6
|
Gonzalez-Moa MJ, Van Dorst B, Lagatie O, Verheyen A, Stuyver L, Biamonte MA. Proof-of-Concept Rapid Diagnostic Test for Onchocerciasis: Exploring Peptide Biomarkers and the Use of Gold Nanoshells as Reporter Nanoparticles. ACS Infect Dis 2018; 4:912-917. [PMID: 29547260 DOI: 10.1021/acsinfecdis.8b00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three O. volvulus immunogenic peptide sequences recently discovered by peptide microarray were adapted to a lateral flow assay (LFA). The LFA employs gold nanoshells as novel high-contrast reporter nanoparticles and detects a serological response against the 3 peptides, found in OvOC9384, OvOC198, and OvOC5528, respectively. When tested on 118 sera from O. volvulus infected patients and 208 control sera, the LFA was 90%, 63%, and 98% sensitive for each peptide, respectively, and 99-100% specific vs samples from healthy volunteers. Samples of other filarial infections cross-reacted by 7-24%. The sensitivity, specificity, and cross-reactivity values matched those obtained by ELISA with the same sample set. While the exact choice of peptide(s) will require fine-tuning, this work establishes that O. volvulus peptides identified by peptide microarray can be translated into an antibody-based LFA and that gold nanoshells provide the same sensitivity, specificity, and cross-reactivity as the corresponding ELISA assays.
Collapse
Affiliation(s)
- Maria J. Gonzalez-Moa
- Drugs & Diagnostics for Tropical Diseases, 4898 Ronson Ct., Suite C, San Diego, California 92111, United States
| | - Bieke Van Dorst
- Janssen Diagnostics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ole Lagatie
- Janssen Diagnostics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ann Verheyen
- Janssen Diagnostics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Lieven Stuyver
- Janssen Diagnostics, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Marco A. Biamonte
- Drugs & Diagnostics for Tropical Diseases, 4898 Ronson Ct., Suite C, San Diego, California 92111, United States
| |
Collapse
|
7
|
Anti-Drug Antibodies: Emerging Approaches to Predict, Reduce or Reverse Biotherapeutic Immunogenicity. Antibodies (Basel) 2018; 7:antib7020019. [PMID: 31544871 PMCID: PMC6698869 DOI: 10.3390/antib7020019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
The development of anti-drug antibodies (ADAs) following administration of biotherapeutics to patients is a vexing problem that is attracting increasing attention from pharmaceutical and biotechnology companies. This serious clinical problem is also spawning creative research into novel approaches to predict, avoid, and in some cases even reverse such deleterious immune responses. CD4+ T cells are essential players in the development of most ADAs, while memory B-cell and long-lived plasma cells amplify and maintain these responses. This review summarizes methods to predict and experimentally identify T-cell and B-cell epitopes in therapeutic proteins, with a particular focus on blood coagulation factor VIII (FVIII), whose immunogenicity is clinically significant and is the subject of intensive current research. Methods to phenotype ADA responses in humans are described, including T-cell stimulation assays, and both established and novel approaches to determine the titers, epitopes and isotypes of the ADAs themselves. Although rational protein engineering can reduce the immunogenicity of many biotherapeutics, complementary, novel approaches to induce specific tolerance, especially during initial exposures, are expected to play significant roles in future efforts to reduce or reverse these unwanted immune responses.
Collapse
|
8
|
Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Anal Chim Acta 2017; 983:189-197. [DOI: 10.1016/j.aca.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
|
9
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|