1
|
Khanefard N, Sapavee S, Akeprathumchai S, Mekvichitsaeng P, Poomputsa K. Production of Neuraminidase Virus Like Particles by Stably Transformed Insect Cells: A Simple Process for NA-Based Influenza Vaccine Development. Mol Biotechnol 2022; 64:1409-1418. [PMID: 35704162 PMCID: PMC9198613 DOI: 10.1007/s12033-022-00519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
Neuraminidase (NA) is a second major surface protein of the influenza virus and has recently been suggested as a supplemental antigen to the major immunodominant hemagglutinin (HA) antigen in the influenza vaccine. NA is less affected by antigenic drift compared to the HA, induces strong anti-neuraminidase immune responses, and provides broader protection against many influenza strains. However, the NA amount in currently licensed influenza virus vaccines is much lower than that of HA, and not standardized. A platform to produce NA antigen, in the form of virus-like particles (VLPs), was thus developed, to facilitate supplementation of NA antigen in the influenza vaccine formula. Stably transformed Sf9 insect cells had been engineered to express the influenza A virus (H5N1) NA gene under a baculovirus OpMNPV IE2 promoter. Recombinant NA protein was synthesized and assembled into VLPs, in the intact cellular environment provided by insect cells. Approximately 150 µg/ml of NA-VLPs was obtained in the culture medium. Purification of the NA-VLPs was achieved by a sucrose density gradient ultracentrifugation. The purified NA-VLPs effectively induced anti-NA antibodies with neuraminidase inhibition activities in mice. This work demonstrates a simple process to produce an immunocompetent NA-VLPs antigen, exclusively made of only neuraminidase, by insect cells.
Collapse
Affiliation(s)
- Najmeh Khanefard
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bangkhunthian), Bangkok, 10150, Thailand
| | - Saithip Sapavee
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bangkhunthian), Bangkok, 10150, Thailand
| | - Saengchai Akeprathumchai
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bangkhunthian), Bangkok, 10150, Thailand
| | - Phenjun Mekvichitsaeng
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bangkhunthian), Bangkok, 10150, Thailand
| | - Kanokwan Poomputsa
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bangkhunthian), Bangkok, 10150, Thailand.
| |
Collapse
|
2
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
3
|
Mabashi-Asazuma H, Jarvis DL. A new insect cell line engineered to produce recombinant glycoproteins with cleavable N-glycans. J Biol Chem 2021; 298:101454. [PMID: 34838817 PMCID: PMC8689212 DOI: 10.1016/j.jbc.2021.101454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 01/09/2023] Open
Abstract
Glycoproteins are difficult to crystallize because they have heterogeneous glycans composed of multiple monosaccharides with considerable rotational freedom about their O-glycosidic linkages. Crystallographers studying N-glycoproteins often circumvent this problem by using β1,2-N-acetylglucosaminyltransferase I (MGAT1)–deficient mammalian cell lines, which produce recombinant glycoproteins with immature N-glycans. These glycans support protein folding and quality control but can be removed using endo-β-N-acetylglucosaminidase H (Endo H). Many crystallographers also use the baculovirus-insect cell system (BICS) to produce recombinant proteins for their work but have no access to an MGAT1-deficient insect cell line to facilitate glycoprotein crystallization in this system. Thus, we used BICS-specific CRISPR–Cas9 vectors to edit the Mgat1 gene of a rhabdovirus-negative Spodoptera frugiperda cell line (Sf-RVN) and isolated a subclone with multiple Mgat1 deletions, which we named Sf-RVNLec1. We found that Sf-RVN and Sf-RVNLec1 cells had identical growth properties and served equally well as hosts for baculovirus-mediated recombinant glycoprotein production. N-glycan profiling showed that a total endogenous glycoprotein fraction isolated from Sf-RVNLec1 cells had only immature and high mannose-type N-glycans. Finally, N-glycan profiling and endoglycosidase analyses showed that the vast majority of the N-glycans on three recombinant glycoproteins produced by Sf-RVNLec1 cells were Endo H-cleavable Man5GlcNAc2 structures. Thus, this study yielded a new insect cell line for the BICS that can be used to produce recombinant glycoproteins with Endo H-cleavable N-glycans. This will enable researchers to combine the high productivity of the BICS with the ability to deglycosylate recombinant glycoproteins, which will facilitate efforts to determine glycoprotein structures by X-ray crystallography.
Collapse
Affiliation(s)
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA; GlycoBac, LLC, Laramie, Wyoming, USA.
| |
Collapse
|
4
|
Fernandes B, Correia R, Sousa M, Carrondo MJT, Alves PM, Roldão A. Integrating high cell density cultures with adapted laboratory evolution for improved Gag-HA virus-like particles production in stable insect cell lines. Biotechnol Bioeng 2021; 118:2536-2547. [PMID: 33764532 DOI: 10.1002/bit.27766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
Stable insect cell lines are emerging as an alternative to the insect cell-baculovirus expression vector system (IC-BEVS) for protein expression, benefiting from being a virus-free, nonlytic system. Still, the titers achieved are considerably lower. In this study, stable insect (Sf-9 and High Five) cells producing Gag virus-like particles (VLPs) were first adapted to grow under hypothermic culture conditions (22°C instead of standard 27°C), and then pseudotyped with a model membrane protein (influenza hemagglutinin [HA]) for expression of Gag-HA VLPs. Adaptation to lower temperature led to an increase in protein titers of up to 12-fold for p24 (as proxy for Gag-VLP) and sixfold for HA, with adapted Sf-9 cells outperforming High Five cells. Resulting Gag-HA VLPs producer Sf-9 cells were cultured to high cell densities, that is, 100 × 106 cell/ml, using perfusion (ATF® 2) in 1 L stirred-tank bioreactors. Specific p24 and HA production rates were similar to those of batch culture, enabling to increase volumetric titers by 7-8-fold without compromising the assembly of Gag-HA VLPs. Importantly, the antigen (HA) quantity in VLPs generated using stable adapted cells in perfusion was ≈5-fold higher than that from IC-BEVS, with the added benefit of being a baculovirus-free system. This study demonstrates the potential of combining stable expression in insect cells adapted to hypothermic culture conditions with perfusion for improving Gag-HA VLPs production.
Collapse
Affiliation(s)
- Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Sousa
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
6
|
Bisht JS, Tomschik M, Gatlin JC. Induction of a Spindle-Assembly-Competent M Phase in Xenopus Egg Extracts. Curr Biol 2019; 29:1273-1285.e5. [PMID: 30930041 DOI: 10.1016/j.cub.2019.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/12/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
Normal mitotic spindle assembly is a prerequisite for faithful chromosome segregation and unperturbed cell-cycle progression. Precise functioning of the spindle machinery relies on conserved architectural features, such as focused poles, chromosome alignment at the metaphase plate, and proper spindle length. These morphological requirements can be achieved only within a compositionally distinct cytoplasm that results from cell-cycle-dependent regulation of specific protein levels and specific post-translational modifications. Here, we used cell-free extracts derived from Xenopus laevis eggs to recapitulate different phases of the cell cycle in vitro and to determine which components are required to render interphase cytoplasm spindle-assembly competent in the absence of protein translation. We found that addition of a nondegradable form of the master cell-cycle regulator cyclin B1 can indeed induce some biochemical and phenomenological characteristics of mitosis, but cyclin B1 alone is insufficient and actually deleterious at high levels for normal spindle assembly. In contrast, addition of a phosphomimetic form of the Greatwall-kinase effector Arpp19 with a specific concentration of nondegradable cyclin B1 rescued spindle bipolarity but resulted in larger-than-normal bipolar spindles with a misalignment of chromosomes. Both were corrected by the addition of exogenous Xkid (Xenopus homolog of human Kid/KIF22), indicating a role for this chromokinesin in regulating spindle length. These observations suggest that, of the many components degraded at mitotic exit and then replenished during the subsequent interphase, only a few are required to induce a cell-cycle transition that produces a spindle-assembly-competent cytoplasm.
Collapse
Affiliation(s)
- Jitender S Bisht
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
7
|
Vidigal J, Fernandes B, Dias MM, Patrone M, Roldão A, Carrondo MJT, Alves PM, Teixeira AP. RMCE-based insect cell platform to produce membrane proteins captured on HIV-1 Gag virus-like particles. Appl Microbiol Biotechnol 2017; 102:655-666. [DOI: 10.1007/s00253-017-8628-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022]
|
8
|
CRISPR-Cas9 vectors for genome editing and host engineering in the baculovirus-insect cell system. Proc Natl Acad Sci U S A 2017; 114:9068-9073. [PMID: 28784806 DOI: 10.1073/pnas.1705836114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The baculovirus-insect cell system (BICS) has been widely used to produce many different recombinant proteins for basic research and is being used to produce several biologics approved for use in human or veterinary medicine. Early BICS were technically complex and constrained by the relatively primordial nature of insect cell protein glycosylation pathways. Since then, recombination has been used to modify baculovirus vectors-which has simplified the system-and transform insect cells, which has enhanced its protein glycosylation capabilities. Now, CRISPR-Cas9 tools for site-specific genome editing are needed to facilitate further improvements in the BICS. Thus, in this study, we used various insect U6 promoters to construct CRISPR-Cas9 vectors and assessed their utility for site-specific genome editing in two insect cell lines commonly used as hosts in the BICS. We demonstrate the use of CRISPR-Cas9 to edit an endogenous insect cell gene and alter protein glycosylation in the BICS.
Collapse
|
9
|
Mooney P, Sulerud T, Pelletier J, Dilsaver M, Tomschik M, Geisler C, Gatlin JC. Tau-based fluorescent protein fusions to visualize microtubules. Cytoskeleton (Hoboken) 2017; 74:221-232. [PMID: 28407416 PMCID: PMC5592782 DOI: 10.1002/cm.21368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule (MT)-dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho-deficient version of the MT-binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decorated Xenopus egg extract spindles more homogenously than similar constructs containing the MT-binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, MT dynamics were not grossly perturbed by the presence of Tau-based FP fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau-based FP fusions as minimally perturbing tools to accurately visualize MTs in living systems.
Collapse
Affiliation(s)
- Paul Mooney
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - Taylor Sulerud
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| | - James Pelletier
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA,
02115, USA
| | - Matthew Dilsaver
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | - Miroslav Tomschik
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY,
82071, USA
- Molecular & Cellular Life Sciences Program, University of
Wyoming, Laramie, WY, 82071, USA
- Cell Organization and Division Group, Marine Biological
Laboratories, Woods Hole, MA, 02543, USA
| |
Collapse
|