1
|
Di Meo A, Wang C, Cheng Y, Diamandis EP, Yousef GM. The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer. Biol Chem 2019; 399:973-982. [PMID: 29604203 DOI: 10.1515/hsz-2018-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The kallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases with trypsin- and chymotrypsin-like activities. Dysregulated expression and/or aberrant activation of KLKs has been linked to various pathophysiological processes, including cancer. Many KLKs have been identified as potential cancer biomarkers. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by pairing to the 3' untranslated region (UTR) of complimentary mRNA targets. miRNAs are dysregulated in many cancers, including prostate, kidney and ovarian cancers. Several studies have shown that miRNAs are involved in the post-transcriptional regulation of KLKs. However, recent evidence suggests that miRNAs can also act as downstream effectors of KLKs. In this review, we provide an update on the epigenetic regulation of KLKs by miRNAs. We also present recent experimental evidence that supports the regulatory role of KLKs on miRNA networks. The potential diagnostic and therapeutic applications of miRNA-kallikrein interactions are also discussed.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Cong Wang
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
2
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|