1
|
Lambart I, Zaryouh H, Audenaerde JV, Liu D, Quatannens D, Lion E, Schiller S, Geissler S, Smits E, Mäder K. Apolipoprotein E4 facilitates transfection of human monocyte-derived dendritic cells by lipid nanoparticles. Int J Pharm 2025:125720. [PMID: 40360096 DOI: 10.1016/j.ijpharm.2025.125720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/21/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
The use of mRNA as a therapeutic drug class is a safe and fast alternative to viral vector or plasmid DNA therapies. Nevertheless, free mRNA will be rapidly degraded after administration to the body and only reach the cytosol of desired cells with difficulty. Lipid nanoparticles (LNP) safely deliver mRNA to cells of interest and can be used in the treatment of different diseases. Dendritic cells are the primary antigen-presenting cells and important for mRNA vaccine delivery. Efforts to increase LNP transfection of these cells are necessary and can be achieved by different approaches. Here, we present apolipoprotein E4 addition to LNP administration as one mean of increasing LNP-mediated eGFP mRNA delivery to dendritic cells. We also show some steps in the preparation method for LNP optimization using MS2 RNA as a novel model nucleic acid.
Collapse
Affiliation(s)
- Izabella Lambart
- Merck Healthcare KGaA, Global Drug Product Development, Orals Development, Darmstadt, Germany; Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Faculty I of Natural Sciences, Halle/Saale, Germany.
| | - Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Dana Liu
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Eva Lion
- Laboratory of Experimental Hematology (LEH), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Stefan Schiller
- Merck Healthcare KGaA, Global Drug Product Development, Orals Development, Darmstadt, Germany.
| | - Simon Geissler
- Merck Healthcare KGaA, Global Drug Product Development, Orals Development, Darmstadt, Germany.
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Karsten Mäder
- Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Faculty I of Natural Sciences, Halle/Saale, Germany.
| |
Collapse
|
2
|
James ER, Church LWP, Hoffman SL, Richie TL, Robertson BD, Hickey PW, Schwartz DJ, Logan PT, Asare TD, Jones ML, Bay JL, Roschel AK, Pfeiffer JL, Acosta RW, Schiavi E, Acosta AM, Noble M, Henkel T, Young C. Piloting delivery of PfSPZ vaccines for malaria through a cryogenic vaccine cold chain to travel and military medicine clinics. J Travel Med 2024; 31:taae007. [PMID: 38206875 PMCID: PMC10998499 DOI: 10.1093/jtm/taae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND PfSPZ vaccines comprising Plasmodium falciparum (Pf) sporozoites (SPZ) have demonstrated > 90% protection against variant Pf malaria infections for at least 12 weeks; they are the only vaccines with the level of efficacy necessary to protect travellers. PfSPZ are eukaryotic cells stabilized by cryopreservation and distributed using a cryogenic (below -150 °C) cold chain. The Ebola vaccine and mRNA vaccines against SARS-CoV-2 pioneered uptake of vaccines requiring non-standard ultra-low temperature cold chains. The cryogenic cold chain using liquid nitrogen (LN2) vapour phase (LNVP) cryoshippers, is simpler, more efficient than -80, -20 or 2-8 °C cold chains, and does not use electricity. This study was conducted to evaluate implementation and integration of a cryogenically distributed vaccine at travel and military immunization clinics. METHODS We conducted sequential 28-day studies evaluating vaccine shipping, storage, maintenance and accession at two US military and two civilian travel health/immunization clinics. In each clinic, personnel were trained in equipment use, procurement and handling of LN2, temperature monitoring and inventory record keeping by in-person or video instruction. RESULTS Sites required 2-4 h/person for two persons to assimilate and develop the expertise to manage vaccine storage and LNVP operations. LN2 for recharging cryoshippers was delivered every 1-2 weeks. Vaccine ordering, receipt, storage and inventory control was conducted effectively. Simulated single dose vaccine cryovial retrieval and thawing were performed successfully in different travel clinic settings. Continuous temperature monitoring at each site was maintained with only one short excursion above -150 °C (-145 °C) through shipping, use and reverse logistics. Staff, during and at study conclusion, provided feedback that has been incorporated into our models for cold chain logistics. CONCLUSIONS These studies demonstrated that the training in delivery, storage, administration and integration of PfSPZ vaccines can be successfully managed in different immunization clinic settings for travellers and military personnel.
Collapse
Affiliation(s)
| | | | | | | | - Brian D Robertson
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Patrick W Hickey
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - David J Schwartz
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Patrick T Logan
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Theresa D Asare
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Macie L Jones
- Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Jeannie L Bay
- Joint Base Lewis-McChord/Madigan Army Medical Center, Lewis-McChord, WA 98431, USA
| | - Austin K Roschel
- Joint Base Lewis-McChord/Madigan Army Medical Center, Lewis-McChord, WA 98431, USA
| | | | | | | | | | - Mark Noble
- Passport Health Silver Spring Travel Clinic, Silver Spring, MD 20903, USA
| | - Thomas Henkel
- Passport Health Silver Spring Travel Clinic, Silver Spring, MD 20903, USA
| | - Cebrina Young
- Passport Health Silver Spring Travel Clinic, Silver Spring, MD 20903, USA
| |
Collapse
|
3
|
To N, Evans RPT, Pearce H, Kamarajah SK, Moss P, Griffiths EA. Current and Future Immunotherapy-Based Treatments for Oesophageal Cancers. Cancers (Basel) 2022; 14:3104. [PMID: 35804876 PMCID: PMC9265112 DOI: 10.3390/cancers14133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Oesophageal cancer is a disease that causes significant morbidity and mortality worldwide, and the prognosis of this condition has hardly improved in the past few years. Standard treatment includes a combination of chemotherapy, radiotherapy and surgery; however, only a proportion of patients go on to treatment intended to cure the disease due to the late presentation of this disease. New treatment options are of utmost importance, and immunotherapy is a new option that has the potential to transform the landscape of this disease. This treatment is developed to act on the changes within the immune system caused by cancer, including checkpoint inhibitors, which have recently shown great promise in the treatment of this disease and have recently been included in the adjuvant treatment of oesophageal cancer in many countries worldwide. This review will outline the mechanisms by which cancer evades the immune system in those diagnosed with oesophageal cancer and will summarize current and ongoing trials that focus on the use of our own immune system to combat disease.
Collapse
Affiliation(s)
- Natalie To
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Richard P. T. Evans
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Sivesh K. Kamarajah
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.P.); (P.M.)
| | - Ewen A. Griffiths
- Department of Upper Gastrointestinal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Trust, Birmingham B15 2GW, UK; (N.T.); (R.P.T.E.); (S.K.K.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
4
|
Cytolytic Activity of Effector T-lymphocytes Against Hepatocellular Carcinoma is Improved by Dendritic Cells Pulsed with Pooled Tumor Antigens. Sci Rep 2019; 9:17668. [PMID: 31776459 PMCID: PMC6881468 DOI: 10.1038/s41598-019-54087-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Cellular immunotherapy is a promising new therapeutic approach for hepatocellular carcinoma (HCC), which has a high recurrence rate, irrespective of the treatment administered. In this study, we attempted to improve the cytolytic activity of effector T-lymphocytes against HCC. T-lymphocytes were activated by monocyte-derived dendritic cells (DCs) pulsed with cell lysate or RNA prepared from HCC cell lines. Monocytes were activated for differentiation into DCs by treatment with the IL4 and GM-CSF. DCs were pulsed with cell lysate or RNA prepared from a single cell line or combinations of two or three HCC cell lines, and then co-cultured with autologous T-lymphocytes with the intent of creating specific cytotoxicity. We discovered that DCs pulsed with total RNA effectuated greater T-lymphocyte function than DCs pulsed with total cell lysate, as evidenced by greater cytolytic activities against HCC target cells. The percentage of Huh7, HepG2, and SNU449 cell apoptosis at effector:target ratio of 10:1 was 42.6 ± 4.5% (p = 0.01), 33.6 ± 3.1% (p = 0.007), and 21.4 ± 1.4% (p < 0.001), respectively. DCs pulsed with pools of antigens prepared from three cell lines improved the cytolytic function of effector T-lymphocytes by approximately two-fold (p < 0.001), which suggests that this approach be further developed and applied for adoptive transfer treatment of HCC.
Collapse
|
5
|
Chen LN, Collins-Johnson N, Sapp N, Pickett A, West K, Stroncek DF, Panch SR. How do I structure logistic processes in preparation for outsourcing of cellular therapy manufacturing? Transfusion 2019; 59:2506-2518. [PMID: 31135995 DOI: 10.1111/trf.15349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
As cell and gene therapies (CGT) assume center stage in early-phase clinical trials for several acute and chronic diseases, there is heightened interest in the standardization and automation of manufacturing processes in preparation for commercialization. Toward this goal, a hybrid and oftentimes geographically separated model comprising regional cell procurement and infusion facilities and a centralized cell manufacturing unit is gaining traction in the field. Although CGT processing facilities in academic institutions are not involved directly in the manufacturing of these therapies, they must be prepared to collaborate with commercial or contract manufacturing organizations (CMOs) and be ready to address several supply-chain challenges that have emerged for autologous and allogeneic CGT. Academic center cell-processing facilities must handle many events up- and downstream of manufacturing such as donor screening, cell collection, product labeling, cryopreservation, transportation, and thaw infusion. These events merit closer evaluation in the context of multifacility manufacturing since standard procedures have yet to be established. Based on our institutional experience, we summarize logistical challenges encountered in the handling and distribution of CGT products in early phase studies, specifically those involving CMO (outsourced) manufacturing. We also make recommendations to standardize processes unique to the CGT supply chain, emphasizing the need to maintain needle-to-needle traceability from product collection to infusion. These guidelines will inform the development of more complex supply-chain models for larger-scale cell and gene therapeutics.
Collapse
Affiliation(s)
- Leonard N Chen
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Naoza Collins-Johnson
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Nasheda Sapp
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Angela Pickett
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Kamille West
- Blood Services Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Sandhya R Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Shinde P, Khan N, Melinkeri S, Kale V, Limaye L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion 2018; 59:686-696. [PMID: 30456902 DOI: 10.1111/trf.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dendritic cell (DC) vaccination involves administration of multiple doses. Cryopreservation of tumor antigen-pulsed DCs can provide a ready to use vaccine source and eliminate the need of frequent withdrawal of the patient's blood for vaccine preparation. The aim of this study was to assess the effect of addition of trehalose in the freezing medium on the recovery of DCs after cryopreservation. STUDY DESIGN AND METHODS DCs were generated from mononuclear cells from apheresis samples of healthy donors. For long-term storage of 6 months, cells were frozen with a rate-controlled programmable freezer and stored in liquid nitrogen. For short-term storage of 1 month, cells were frozen and stored at -80°C. DCs frozen with Iscove's Modified Dulbecco's Medium + 10% dimethyl sulfoxide + 20% fetal bovine serum served as the control group, while the test group was additionally supplemented with 50 μg/mL of trehalose. After revival of control and test DCs, they were assessed for viability, morphology, phenotype, and functions. RESULTS The addition of trehalose to the conventional freezing medium helped to preserve the viability and functionality of DCs better than dimethyl sulfoxide alone in both long- and short-term cryopreservation. Trehalose also protected the mitochondrial membrane potential and cytoskeleton integrity of DCs, which are necessary for their functionality. Mediators of the intrinsic apoptotic pathway like Caspase-9 and Bim-1 were found to be low in the test. CONCLUSION Supplementation of conventional freezing medium with trehalose results in better quality of DCs revived after cryopreservation. This finding could help improve DC vaccine preparation for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Nikhat Khan
- National Centre for Cell Science, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | | | | |
Collapse
|
7
|
Abstract
mRNA-electroporated dendritic cells (DC) are demonstrating clinical benefit in patients in many therapeutic areas, including cancer and infectious diseases. According to current good manufacturing guidelines, cell-based medicinal products have to be defined for identity, purity, potency, stability, and viability. In order to comply with the directives and guidelines defined by the regulatory authorities, we report here a standardized and reproducible method for the manufacturing of clinical-grade mRNA-transfected DC.
Collapse
|