1
|
Thompson ALC, Wopereis JLM, Tekle YI, Katz LA. Visualizing Epigenetics: A Review of Microscopy Techniques for Investigating DNA Methylation Patterns, Chromatin Structure, and Gene Expression. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf017. [PMID: 40156130 PMCID: PMC11953014 DOI: 10.1093/mam/ozaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/30/2025] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
Microscopy approaches are frequently used to decipher the localization and quantify the abundance of biologically relevant molecular targets within single cells. Recent research has applied many optical imaging techniques to specifically visualize epigenetic modifications, the mechanisms by which organisms control gene expression in response to environmental factors. While many molecular and omics-based approaches are used to understand epigenetic mechanisms, imaging approaches provide spatial information that supplies greater context for discerning function. Thus, labeling approaches have been developed to quantify and visualize epigenetic targets using various fluorescence microscopy, electron microscopy, and super-resolution microscopy techniques. Here, we synthesize information about microscopy methods that enable visualization of epigenetic marks including DNA methylation, histone modifications, and localization of RNAs, which provide insights into mechanisms involved in chromatin remodeling and gene expression. The ability to determine how and where specific epigenetic marks manifest structurally and functionally in cells demonstrates the power of microscopy in aiding our understanding of epigenetic processes.
Collapse
Affiliation(s)
- Anna-Lee C Thompson
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
| | - Judith L M Wopereis
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
| | - Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Ln SW, Atlanta, GA 30314, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, 300 Massachusetts Ave, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Malcore RM, Samanta MK, Kalantry S, Iwase S. Regulation of Sex-biased Gene Expression by the Ancestral X-Y Chromosomal Gene Pair Kdm5c-Kdm5d. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620066. [PMID: 39484414 PMCID: PMC11527134 DOI: 10.1101/2024.10.24.620066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Conventionally, Y-linked Sry is thought to drive sex differences by triggering differential hormone production. Ancestral X-Y gene pairs, however, are hypothesized to drive hormone-independent sex differences. Here, we show that the X-Y gene pair Kdm5c-Kdm5d regulates sex-biased gene expression in pluripotent mouse embryonic stem cells (ESCs). Wild-type (WT) XX female ESCs exhibit >2-fold higher expression of 409 genes relative to WT XY male ESCs. Conversely, WT XY male ESCs exhibit >2-fold higher expression of 126 genes compared to WT XX female ESCs. Loss of Kdm5c in female ESCs downregulates female-biased genes. In contrast, loss of either Kdm5c or Kdm5d in male ESCs upregulates female-biased genes and downregulates male-biased genes, effectively neutralizing sex-biased gene expression. KDM5C promotes the expression of Kdm5d and several other Y-linked genes in male ESCs. Moreover, ectopic Kdm5d expression in female ESCs is sufficient to drive male-biased gene expression. These results establish Kdm5c-Kdm5d as critical regulators of sex-biased gene expression.
Collapse
Affiliation(s)
- Rebecca M. Malcore
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Milan Kumar Samanta
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Lead contact
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Wen J, Xuan B, Gao Y, Liu Y, Wang L, He L, Meng X, Zhou T, Tao Y, Guo K, Wang Y. Lnc-17Rik promotes the immunosuppressive function of Myeloid-Derived suppressive cells in esophageal cancer. Cell Immunol 2023; 385:104676. [PMID: 36780770 DOI: 10.1016/j.cellimm.2023.104676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a population of immature bone marrow cells that accumulate in large numbers in the spleen, peripheral blood, bone marrow, lymph nodes, and local and metastatic foci of tumors. C/EBP homologous protein (CHOP) and CCAAT/enhancer binding protein β (C/EBPβ) play key roles in regulating the immunosuppressive function and differentiation of MDSCs. Our study revealed that the long noncoding RNA Lnc-17Rik was able to promote immunosuppression in tumors by facilitating the activation and expression of key genes involved in MDSC differentiation. Lnc-17Rik was shown to directly interact with CHOP and C/EBPβ LIP to facilitate their dissociation from the transcriptional repressor complex involving C/EBP LAP/LIP/CHOP. Moreover, Lnc-17Rik increased the association of WD repeat-containing protein 5 (WDR5) with C/EBP LAP, promoting H3K4me3 enrichment in the promoter regions of arginase 1 (Arg-1), cyclooxygenase 2 (COX2), nitric oxide synthase 2 (NOS2) and NADPH oxidase 2 (NOX2) to enhance the expression of these genes. Furthermore, using a CD45 chimeric model we confirmed that Lnc-17Rik promoted the differentiation of monocytic (M)-MDSCs in vivo with the introduction of Lnc-17Rik-overexpressing MDSCs shown to promote tumor growth as a result of enhancing their immunosuppressive function. Notably, human Lnc-17Rik is highly homologous to mouse Lnc-17Rik and fulfills similar functions in human MDSC-like cells. In addition, we also found a high level of Lnc-17Rik in peripheral blood MDSC of patients with esophageal cancer. These findings suggest that Lnc-17Rik plays an important role in controlling the immunosuppressive function of MDSCs in the tumor environment and may further serve as a potential therapeutic target for patients with esophageal cancer.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Tao
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Kening Guo
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China; Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China.
| |
Collapse
|
4
|
Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023; 12:cells12050729. [PMID: 36899864 PMCID: PMC10001313 DOI: 10.3390/cells12050729] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Abiotic stresses triggered by climate change and human activity cause substantial agricultural and environmental problems which hamper plant growth. Plants have evolved sophisticated mechanisms in response to abiotic stresses, such as stress perception, epigenetic modification, and regulation of transcription and translation. Over the past decade, a large body of literature has revealed the various regulatory roles of long non-coding RNAs (lncRNAs) in the plant response to abiotic stresses and their irreplaceable functions in environmental adaptation. LncRNAs are recognized as a class of ncRNAs that are longer than 200 nucleotides, influencing a variety of biological processes. In this review, we mainly focused on the recent progress of plant lncRNAs, outlining their features, evolution, and functions of plant lncRNAs in response to drought, low or high temperature, salt, and heavy metal stress. The approaches to characterize the function of lncRNAs and the mechanisms of how they regulate plant responses to abiotic stresses were further reviewed. Moreover, we discuss the accumulating discoveries regarding the biological functions of lncRNAs on plant stress memory as well. The present review provides updated information and directions for us to characterize the potential functions of lncRNAs in abiotic stresses in the future.
Collapse
|
5
|
Wanigasuriya I, Kinkel SA, Beck T, Roper EA, Breslin K, Lee HJ, Keniry A, Ritchie ME, Blewitt ME, Gouil Q. Maternal SMCHD1 controls both imprinted Xist expression and imprinted X chromosome inactivation. Epigenetics Chromatin 2022; 15:26. [PMID: 35843975 PMCID: PMC9290310 DOI: 10.1186/s13072-022-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Embryonic development is dependent on the maternal supply of proteins through the oocyte, including factors setting up the adequate epigenetic patterning of the zygotic genome. We previously reported that one such factor is the epigenetic repressor SMCHD1, whose maternal supply controls autosomal imprinted expression in mouse preimplantation embryos and mid-gestation placenta. In mouse preimplantation embryos, X chromosome inactivation is also an imprinted process. Combining genomics and imaging, we show that maternal SMCHD1 is required not only for the imprinted expression of Xist in preimplantation embryos, but also for the efficient silencing of the inactive X in both the preimplantation embryo and mid-gestation placenta. These results expand the role of SMCHD1 in enforcing the silencing of Polycomb targets. The inability of zygotic SMCHD1 to fully restore imprinted X inactivation further points to maternal SMCHD1's role in setting up the appropriate chromatin environment during preimplantation development, a critical window of epigenetic remodelling.
Collapse
Affiliation(s)
- Iromi Wanigasuriya
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Sarah A Kinkel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Tamara Beck
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ellise A Roper
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, Australia
| | - Kelsey Breslin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Heather J Lee
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, Australia
| | - Andrew Keniry
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia
- The Department of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
6
|
Samanta MK, Gayen S, Harris C, Maclary E, Murata-Nakamura Y, Malcore RM, Porter RS, Garay PM, Vallianatos CN, Samollow PB, Iwase S, Kalantry S. Activation of Xist by an evolutionarily conserved function of KDM5C demethylase. Nat Commun 2022; 13:2602. [PMID: 35545632 PMCID: PMC9095838 DOI: 10.1038/s41467-022-30352-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
XX female and XY male therian mammals equalize X-linked gene expression through the mitotically-stable transcriptional inactivation of one of the two X chromosomes in female somatic cells. Here, we describe an essential function of the X-linked homolog of an ancestral X-Y gene pair, Kdm5c-Kdm5d, in the expression of Xist lncRNA, which is required for stable X-inactivation. Ablation of Kdm5c function in females results in a significant reduction in Xist RNA expression. Kdm5c encodes a demethylase that enhances Xist expression by converting histone H3K4me2/3 modifications into H3K4me1. Ectopic expression of mouse and human KDM5C, but not the Y-linked homolog KDM5D, induces Xist in male mouse embryonic stem cells (mESCs). Similarly, marsupial (opossum) Kdm5c but not Kdm5d also upregulates Xist in male mESCs, despite marsupials lacking Xist, suggesting that the KDM5C function that activates Xist in eutherians is strongly conserved and predates the divergence of eutherian and metatherian mammals. In support, prototherian (platypus) Kdm5c also induces Xist in male mESCs. Together, our data suggest that eutherian mammals co-opted the ancestral demethylase KDM5C during sex chromosome evolution to upregulate Xist for the female-specific induction of X-inactivation.
Collapse
Affiliation(s)
- Milan Kumar Samanta
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Rebecca M Malcore
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Patricia M Garay
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Christina N Vallianatos
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Paul B Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
| |
Collapse
|
7
|
Li Y, Liu L, Lv Y, Zhang Y, Zhang L, Yu H, Tian W, Zhang Z, Cui S. Silencing long non-coding RNA HNF1A-AS1 inhibits growth and resistance to TAM of breast cancer cells via the microRNA-363/SERTAD3 axis. J Drug Target 2021; 29:742-753. [PMID: 33472456 DOI: 10.1080/1061186x.2021.1878362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) can exert effects on drug resistance of cancer cells. This study investigated the role of lncRNA HNF1A-antisense 1 (HNF1A-AS1) in growth and Tamoxifen (TAM) sensitivity of breast cancer (BC) cells. HNF1A-AS1 expression was promoted in BC cells and tissues. BC cells with HNF1A-AS1 silencing were constructed to detect cell proliferation. TAM resistant cell line with HNF1A-AS1 silencing and parent cell line with overexpressed HNF1A-AS1 were constructed to measure drug resistance. Silencing HNF1A-AS1 reduced proliferation and TAM resistance of BC cells. The downstream microRNAs (miRs) of HNF1A-AS1 and its targets were figured out and their functions in TAM resistance of BC cells were identified. HNF1A-AS1 sponged miR-363 to promote SERTAD3 expression. Downregulation of miR-363 or upregulation of SERTAD3 stimulated TAM resistance of BC cells. The findings in vitro were reproduced in in vivo experiments. It could be concluded that silencing HNF1A-AS1 inhibited growth and drug resistance to TAM of BC cells through the miR-363/SERTAD3 axis and the inactivation of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Ying Li
- Prenatal Diagnosis Center, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Ling Liu
- Prenatal Diagnosis Center, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Yidong Lv
- Department of Galactophore, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Yanwu Zhang
- Department of Galactophore, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Linlin Zhang
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Haiyang Yu
- Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Weifang Tian
- Prenatal Diagnosis Center, Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Zhan Zhang
- Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| | - Shihong Cui
- Third Affiliated Hospital of Zhengzhou University (Henan Maternal and Child Health Care Hospital), Zhengzhou, Henan, P.R. China
| |
Collapse
|
8
|
Wu H, Gu J, Zhou D, Cheng W, Wang Y, Wang Q, Wang X. LINC00160 mediated paclitaxel-And doxorubicin-resistance in breast cancer cells by regulating TFF3 via transcription factor C/EBPβ. J Cell Mol Med 2020; 24:8589-8602. [PMID: 32652877 PMCID: PMC7412707 DOI: 10.1111/jcmm.15487] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance represents a major challenge in breast cancer (BC) treatment. This study aimed to probe the roles of LINC00160 in paclitaxel‐ and doxorubicin‐resistant BC cells. Three pairs of BC and adjacent normal tissue were used for lncRNA microarray analysis. Paclitaxel‐resistant MCF‐7 (MCF‐7/Tax) and doxorubicin‐resistant BT474 (BT474/Dox) cells were generated by exposure of parental drug‐sensitive MCF‐7 or BT474 cells to gradient concentrations of drugs. Correlation between LINC00160 expression and clinical response to paclitaxel in BC patients was examined. Short interfering RNAs specifically targeting LINC00160 or TFF3 were designed to construct LINC00160‐ and TFF3‐depleted BC cells to discuss their effects on biological episodes of MCF‐7/Tax and BT474/Dox cells. Interactions among LINC00160, transcription factor C/EBPβ and TFF3 were identified. MCF‐7/Tax and BT474/Dox cells stable silencing of LINC00160 were transplanted into nude mice. Consequently, up‐regulated LINC00160 led to poor clinical response to paclitaxel in BC patients. LINC00160 knockdown reduced drug resistance in MCF‐7/Tax and BT474/Dox cells and reduced cell migration and invasion. LINC00160 recruited C/EBPβ into the promoter region of TFF3 and increased TFF3 expression. LINC00160‐depleted MCF‐7/Tax and BT474/Dox cells showed decreased tumour growth rates in nude mice. Overall, we identified a novel mechanism of LINC00160‐mediated chemoresistance via the C/EBPβ/TFF3 axis, highlighting the potential of LINC00160 for treating BC with chemoresistance.
Collapse
Affiliation(s)
- Huaiguo Wu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Wuxi, China
| | - Daoping Zhou
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Wei Cheng
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Biology, College of Arts & Science, Massachusetts University, Boston, MA, USA
| | - Qingping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xuedong Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| |
Collapse
|
9
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
10
|
Gao Y, Shang W, Zhang D, Zhang S, Zhang X, Zhang Y, Yang R. Lnc-C/EBPβ Modulates Differentiation of MDSCs Through Downregulating IL4i1 With C/EBPβ LIP and WDR5. Front Immunol 2019; 10:1661. [PMID: 31379854 PMCID: PMC6650770 DOI: 10.3389/fimmu.2019.01661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), which play an important role in tumor and inflammatory diseases, are divided into two subsets CD11b+Ly6ChiLy6G- monocytic MDSC (Mo-MDSC) and CD11b+Ly6Clow/negLy6G+ polymorphonuclear MDSC (PMN-MDSC) with different immunosuppressive function. However, it is poorly understood the mechanism(s) to control differentiation of Mo-MDSCs and PMN-MDSCs. Here, we found that lnc-C/EBPβ may promote PMN-MDSC but impede differentiation of Mo-MDSCs in vitro and in vivo. We demonstrated that lnc-C/EBPβ mediated differentiation of MDSCs was through downregulating multiple transcripts such as IL4il. Lnc-C/EBPβ not only bound to C/EBPβ isoform LIP to inhibit the activation of C/EBPβ but also interacted with WDR5 to interrupt the enrichment of H3K4me3 mark on the promoter region of IL4i1. Data also imply that conserved homo lnc-C/EBPβ has a similar function with mouse lnc-C/EBPβ. Since MDSC subsets exert different suppressive function, lnc-C/EBPβ may be acted as a potential therapeutic target for inflammatory and tumor-associated diseases.
Collapse
Affiliation(s)
- Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Harris C, Cloutier M, Trotter M, Hinten M, Gayen S, Du Z, Xie W, Kalantry S. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 2019; 8:e44258. [PMID: 30938678 PMCID: PMC6541438 DOI: 10.7554/elife.44258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.
Collapse
Affiliation(s)
- Clair Harris
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Marissa Cloutier
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Megan Trotter
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Michael Hinten
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Srimonta Gayen
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Sundeep Kalantry
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
12
|
Shang W, Gao Y, Tang Z, Zhang Y, Yang R. The Pseudogene Olfr29-ps1 Promotes the Suppressive Function and Differentiation of Monocytic MDSCs. Cancer Immunol Res 2019; 7:813-827. [PMID: 30914411 DOI: 10.1158/2326-6066.cir-18-0443] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/11/2018] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Long noncoding RNA (lncRNA) plays a critical role in many biological processes, such as cell differentiation and development. However, few studies about lncRNAs regulating the differentiation and development of myeloid-derived suppressor cells (MDSCs) exist. In this study, we identified a lncRNA pseudogene, Olfr29-ps1, which was expressed in MDSCs and upregulated by the proinflammatory cytokine IL6. The Olfr29-ps1 in vertebrates is conserved, and the similarity between the Olfr29-ps1 and human OR1F2P sequence is 43%. This lncRNA promoted the immunosuppressive function and differentiation of monocytic (Mo-)MDSCs in vitro and in vivo It directly sponged miR-214-3p to downregulate miR-214-3p, which may target MyD88 to modulate the differentiation and development of MDSCs. The functions of Olfr29-ps1 were dependent on IL6-mediated N 6-methyladenosine (m6A) modification, which not only enhanced Olfr29-ps1, but also promoted the interaction of Olfr29-ps1 with miR-214-3p Thus, our results demonstrated that the pseudogene Olfr29-ps1 may regulate the differentiation and function of MDSCs through a m6A-modified Olfr29-ps1/miR-214-3p/MyD88 regulatory network, revealing a mechanism for the regulation of myeloid cells and also providing potential targets for antitumor immunotherapy.
Collapse
Affiliation(s)
- Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhenzhen Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China. .,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Gao Y, Sun W, Shang W, Li Y, Zhang D, Wang T, Zhang X, Zhang S, Zhang Y, Yang R. Lnc-C/EBPβ Negatively Regulates the Suppressive Function of Myeloid-Derived Suppressor Cells. Cancer Immunol Res 2018; 6:1352-1363. [PMID: 30171135 DOI: 10.1158/2326-6066.cir-18-0108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/14/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are regulators of immune responses in cancer. The differentiation and function of these MDSCs may be regulated through multiple factors, such as microRNAs. However, the effect of long noncoding RNAs (lncRNA) on the differentiation and function of MDSCs is poorly understood. We identified a long noncoding RNA (lncRNA) named lnc-C/EBPβ in MDSCs, which may control suppressive functions of MDSCs. Lnc-C/EBPβ could be induced in in vitro and in vivo tumor and inflammatory environments. It regulated a set of target transcripts, such as Arg-1, NOS2, NOX2, and COX2, to control immune-suppressive function and differentiation of MDSCs. This lncRNA was also able to bind to the C/EBPβ isoform LIP to inhibit the activation of C/EBPβ. We also found that the conserved homologue lnc-C/EBPβ has a similar function to murine lnc-C/EBPβ These findings suggest a negative feedback role for lnc-C/EBPβ in controlling the immunosuppressive functions of MDSC in the tumor environment. Cancer Immunol Res; 6(11); 1352-63. ©2018 AACR.
Collapse
Affiliation(s)
- Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Tianze Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China. .,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Gao Y, Wang T, Li Y, Zhang Y, Yang R. Lnc-chop Promotes Immunosuppressive Function of Myeloid-Derived Suppressor Cells in Tumor and Inflammatory Environments. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531162 DOI: 10.4049/jimmunol.1701721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are major regulators of immune responses in cancer. Both C/EBP homologous protein (CHOP) and C/EBPβ play a critical role in regulating immunosuppressive function of MDSCs. In this study, we identified a novel long noncoding RNA termed as lnc-chop in MDSCs, which may interact with CHOP and the C/EBPβ isoform liver-enriched inhibitory protein. The binding of lnc-chop with both CHOP and the C/EBPβ isoform liver-enriched inhibitory protein promoted the activation of C/EBPβ and upregulated the expression of arginase-1, NO synthase 2, NADPH oxidase 2, and cyclooxygenase-2, which are related to the immunosuppressive function of MDSCs in inflammatory and tumor environments. Additionally, lnc-chop also promoted the enrichment of H3K4me3 on the promoter region of arginase-1, NO synthase 2, NADPH oxidase 2, and cyclooxygenase-2. These findings suggest an important role of lnc-chop in controlling immunosuppressive function of MDSCs in the tumor environment.
Collapse
Affiliation(s)
- Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Tiantian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Cloutier M, Harris C, Gayen S, Maclary E, Kalantry S. Experimental Analysis of Imprinted Mouse X-Chromosome Inactivation. Methods Mol Biol 2018; 1861:177-203. [PMID: 30218368 PMCID: PMC6209079 DOI: 10.1007/978-1-4939-8766-5_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-chromosome inactivation is a dosage compensation mechanism that equalizes X-linked gene expression between male and female mammals through the transcriptional silencing of most genes on one of the two X-chromosomes in females. With a few key exceptions, once the X-chromosome is inactivated replicated copies of that X-chromosome are maintained as inactive in all descendant cells. X-inactivation is therefore a paradigm of epigenetic inheritance. Imprinted X-inactivation is a specialized form of X-inactivation that results in the silencing of the paternally derived X-chromosome. Due to its parent-of-origin-specific pattern of inactivation, imprinted X-inactivation is a model of mitotic as well as meiotic, i.e., transgenerational, epigenetic inheritance. All cells of the early mouse embryo undergo imprinted X-inactivation, a pattern that is subsequently maintained in extraembryonic cell types in vivo and in vitro. Here, we describe both high- and low-throughput approaches to interrogate imprinted X-inactivation in the mouse embryo as well in cultured extraembryonic stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Shang W, Tang Z, Gao Y, Qi H, Su X, Zhang Y, Yang R. LncRNA RNCR3 promotes Chop expression by sponging miR-185-5p during MDSC differentiation. Oncotarget 2017; 8:111754-111769. [PMID: 29340089 PMCID: PMC5762357 DOI: 10.18632/oncotarget.22906] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/17/2017] [Indexed: 02/01/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in regulating immune responses in cancer and other pathological conditions. Mechanism(s) regulating MDSC differentiation and function is not completely clear, especially epigenetic regulation. In this study, we found that MDSCs express retinal non-coding RNA3 (RNCR3), and the expression in MDSCs is upregulated by inflammatory and tumor associated factors. RNCR3 may function as a competing endogenous RNA (ceRNA) to promote Chop expression by sponging miR-185-5p during MDSC differentiation. RNCR3 knockdown suppressed differentiation and function of MDSCs in vitro and in vivo. Quantitative RT-PCR showed that RNCR3 was negatively regulated by miR-185-5p in MDSCs. MiR-185-5p affected the expansion of MDSCs and reversed the effect of RNCR3 on MDSC differentiation and function through directly targeting Chop. Thus, our results suggest a RNCR3/miR-185-5p/Chop autologously strengthening network to promote MDSC differentiation and suppressive function in response to extracellular inflammatory and tumor-associated signals.
Collapse
Affiliation(s)
- Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zhenzhen Tang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Fok ET, Scholefield J, Fanucchi S, Mhlanga MM. The emerging molecular biology toolbox for the study of long noncoding RNA biology. Epigenomics 2017; 9:1317-1327. [PMID: 28875715 DOI: 10.2217/epi-2017-0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.
Collapse
Affiliation(s)
- Ezio T Fok
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Janine Scholefield
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Stephanie Fanucchi
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Musa M Mhlanga
- Gene Expression & Biophysics Group, Biosciences, CSIR, Pretoria, Gauteng, South Africa.,Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.,Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Maclary E, Hinten M, Harris C, Sethuraman S, Gayen S, Kalantry S. PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biol 2017; 18:82. [PMID: 28468635 PMCID: PMC5415793 DOI: 10.1186/s13059-017-1211-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Results Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed–/– TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed–/– TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed–/– TSCs are depleted for active chromatin characteristics in WT TSCs. Conclusions A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed–/– TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1211-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Shriya Sethuraman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
| |
Collapse
|